精英家教网 > 高中数学 > 题目详情
已知f(x)=ex+2ax(a为常数),曲线y=f(x)在点(0,f(0))处的切线与直线x-y-3=0垂直.
(Ⅰ)求a的值及函数f(x)的单调区间;
(Ⅱ)证明:当x>0时,ex>x2
(Ⅲ)设F(x)=f(x)-ex+
1
3
x3+mx2
+1,若F(x)在(1,3)上单调递减,求实数m的取值范围.
考点:利用导数研究曲线上某点切线方程,利用导数研究函数的单调性
专题:导数的概念及应用,导数的综合应用
分析:本题(Ⅰ)根据导函数求出切线的斜率,再利用垂直关系得到斜率间的关系,从而求出参数a的值,由导函数值 的正负判断出函数的单调区间;(Ⅱ)将原不等式转化成一个函数值为正的问题,通过导函数研究出函数的单调性,得到函数的最小值为正,得到本题结论;(Ⅲ)根据函数单调递减的特征,得到导函数满足的条件,从而求出实数m的取值范围,得到本题结论.
解答: 解(Ⅰ)由题意知,曲线y=f(x)在点(0,f(0))处的切线的斜率为-1.
由f(x)=ex+2ax,得f'(x)=ex+2a,
∴f'(0)=1+2a=-1,
得a=-1
∴f(x)=ex-2x,f'(x)=ex-2
令f'(x)=0,得x=ln2
当x<ln2时,f'(x)<0,f(x)单调递减;
当x>ln2时,f'(x)>0,f(x)单调递增;
∴f(x)的单调递增区间为(ln2,+∞),单调递减区间为(-∞,ln2).
(Ⅱ)令g(x)=ex-x2,则g'(x)=ex-2x
由(Ⅰ)知,f(x)的极小值即最小值[f(x)]min=f(ln2)=2-2ln2>0,
∴g'(x)=f(x)>0,
故g(x)在R上单调递增,因此,当x>0时,g(x)>g(0)=1>0,即ex>x2
(Ⅲ)由题意知,F(x)=
1
3
x3+mx2-2x+1

∵F(x)在(1,3)上单调递减,
∴F'(x)=x2+2mx-2≤0在(1,3)恒成立,
∴F′(x)图象过点(0,-2),
F′(1)=1+2m-2≤0
F(3)=9+6m-2≤0

m≤-
7
6

所以满足实数m的取值范围为(-∞,-
7
6
).
点评:本题考查了导函数与函数单调性、最值之间的关系,本题难度适中,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆Γ:
x2
a2
+
y2
b2
=1(a>b>0)经过点M(4,2),且离心率为
2
2
,R(x0,y0)是椭圆Γ上的任意一点,从原点O引圆R:(x-x02+(y-y02=8的两条切线分别交椭圆于P,Q.
(1)求椭圆Γ的方程;
(2)求证:OP2+OQ2为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知三棱柱ABC-A1B1C1的体积为V,则三棱锥C1-ABC的体积是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二阶矩阵M=
a1
3b
的特征值λ=-1所对应的一个特征向量
e1
=
1
-3

(1)求矩阵M;
(2)设曲线C在变换矩阵M作用下得到的曲线C′的方程为xy=1,求曲线C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,若双曲线Γ:
x2
a2
-
y2
b2
=1(a>0,b>0)的渐近线为l1,l2,直线l:
x
c
+
y
b
=1分别与l1,l2交于A,B,若线段AB中点横坐标为-c,则双曲线Γ的离心率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设矩阵M是把坐标平面上的点的纵坐标伸长到原来的2倍,横坐标保持不变的伸缩变换.
(Ⅰ)求矩阵M;
(Ⅱ)求矩阵M的特征值以及属于每个特征值的一个特征向量.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的两个焦点恰为椭圆
x2
4
+y2
=1的两个顶点,且离心率为2,则该双曲线的标准方程为(  )
A、x2-
y2
3
=1
B、
x2
4
-
y2
12
=1
C、
x2
3
-y2
=1
D、
x2
12
-
y2
4
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

学校餐厅每天供应500名学生用餐,每星期一有A、B两种菜可供选择.调查表明,凡是在这星期一选A菜的,下星期一会有20%改选B菜;而选B菜的,下星期一会有30%改选A菜.用an表示第n个星期一选A的人数,如果a1=428,则a4的值为(  )
A、324B、316
C、304D、302

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=3x+3-x,g(x)=3x-3-x的定义域均为R,则(  )
A、f(x)与g(x),均为奇函数
B、f(x)与g(x)均为偶函数
C、f(x)为奇函数,g(x)为偶函数
D、f(x)为偶函数,g(x)为奇函数

查看答案和解析>>

同步练习册答案