精英家教网 > 高中数学 > 题目详情

在极坐标系(ρ,θ)(0≤θ<2π)中,直线数学公式被圆ρ=2sinθ截得的弦的长是________.


分析:把极坐标方程化为直角坐标方程,求出圆心和半径,利用点到直线的距离公式求得圆心到直线的距离d,再由弦长公式求得结果.
解答:直线 即 y=x,圆ρ=2sinθ化为直角坐标方程为 x2+y2=2y,即 x2+(y-1)2=1,
表示以(0,1)为圆心,半径等于1的圆.
圆心到直线的距离d==,故弦长为2=
故答案为
点评:本题主要考查把极坐标方程化为直角坐标方程的方法,点到直线的距离公式、弦长公式的应用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在极坐标系Ox中,已知曲线C1:ρcos(θ+
π
4
)
=
2
2
,C2:ρ=1(0≤θ≤π),C3
1
ρ2
=
cos2θ
3
+sin2θ
,设C1与C2交于点M
(I)求点M的极坐标;
(II)若动直线l过点M,且与曲线C3交于两个不同的点A,B,求
|MA|•|MB|
|AB|
的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)如图,∠PAQ是直角,圆O与AP相切于点T,与AQ相交于两点B,C.求证:BT平分∠OBA
(2)若点A(2,2)在矩阵M=
.
cosα-sinα
sinαcosα
.
对应变换的作用下得到的点为B(-2,2),求矩阵M的逆矩阵;
(3)在极坐标系中,A为曲线ρ2+2ρcosθ-3=0上的动点,B为直线ρcosθ+ρsinθ-7=0上的动点,求AB的最小值;
(4)已知a1,a2…an都是正数,且a1•a2…an=1,求证:(2+a1)(2+a2)…(2+an)≥3n

查看答案和解析>>

科目:高中数学 来源: 题型:

坐标系与参数方程,在极坐标系中,已知圆C的圆心坐标为(3,
π3
)
,半径为3,点Q在圆周上运动,
(Ⅰ)求圆C的极坐标方程;
(Ⅱ)设直角坐标系的原点与极点O重合,x轴非负半轴与极轴重合,M为OQ中点,求点M的参数方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

选做题(请考生在三个小题中任选一题作答,如果多做,则按所做的第一题评阅记分).
(A)(坐标系与参数方程) 在极坐标系中,过圆ρ=6cosθ的圆心,且垂直于极轴的直线的极坐标方程为
ρcosθ=3
ρcosθ=3

(B)(不等式选讲)已知关于x的不等式|x+a|+|x-1|+a<2011(a是常数)的解是非空集合,则a的取值范围
a<1005
a<1005

(C)(几何证明选讲)如图:若PA=PB,∠APB=2∠ACB,AC与PB交于点D,且PB=4,PD=3,则AD•DC=
7
7

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•宝山区二模)在极坐标系中,点(m,
π
6
)(m>0)到直线ρcos(θ-
π
6
)
=3的距离为2,则m=
1或5
1或5

查看答案和解析>>

同步练习册答案