精英家教网 > 高中数学 > 题目详情
对于使-x2+2x≤M恒成立的所有常数M中,M的最小值为
1
1
分析:-x2+2x≤M恒成立等价于-x2+2x的最大值小于等于M,利用二次函数性质求出函数的最大值即可.
解答:解:-x2+2x=-(x-1)2+1≤1,
又-x2+2x≤M恒成立,
所以M≥1,
所以M的最小值为1,
故答案为:1.
点评:本题考查二次函数的性质及恒成立问题,恒成立问题往往转化为函数最值处理.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对于使-x2+2x≤M成立的所有常数M中,我们把M的最小值1叫做-x2+2x的上确界,若a,b∈R+,且a+b=1,则-
1
2a
-
2
b
的上确界为(  )
A、
9
2
B、-
9
2
C、-
1
4
D、-4

查看答案和解析>>

科目:高中数学 来源: 题型:

对于使-x2+2x≤M成立的所有常数M中,我们把M的最小值l做-x2+2x的上确界,若a,b∈R,且a+b=1,则-
1
2a
-
2
b
的上确界为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

对于使x2-2x≥M成立的所有常数M中,我们把M的最大值-1,称为函数x2-2x的“下确界”,若x,y,z∈R+,且x-y+2z=0,
y2
xz
的“下确界”为(  )
A、8B、6C、4D、1

查看答案和解析>>

科目:高中数学 来源:2011年江苏省高考数学仿真押题试卷(09)(解析版) 题型:解答题

对于使-x2+2x≤M成立的所有常数M中,我们把M的最小值l做-x2+2x的上确界,若a,b∈R,且a+b=1,则--的上确界为   

查看答案和解析>>

同步练习册答案