精英家教网 > 高中数学 > 题目详情

设函数

(1)当时,函数取得极值,求的值;

(2)当时,求函数在区间[1,2]上的最大值;

(3)当时,关于的方程有唯一实数解,求实数的值.

 

【答案】

(1);(2)时,取最大值;(3)

【解析】

试题分析:(1)先求出,因为当时,函数取得极值,所以,从而求出;(2)根据判断函数在区间[1,2]上的单调性,从而判断出最大值点,求出最大值;(3)由题意可知,方程有唯一实数解,所以有唯一实数解,设,则函数图像与轴有且只有一个交点,根据导数判断函数的单调性,可知函数存在极小值即为最小值,最小值为,从中求出

试题解析:

(1)的定义域为,所以.因为当时,函数取得极值,所以,所以.经检验,符合题意.

(2),令

因为,所以,即在[1,2]上单调递增,

所以时,取最大值

(3)因为方程有唯一实数解,

所以有唯一实数解,

,则

,因为

所以(舍去),

时,上单调递减,

时,上单调递增,

所以当时,取最小值,则   即

所以,因为,所以(*),设函数

因为当时,是增函数,所以至多有一解.

因为,所以方程(*)的解为

,解得

考点:本题考查了导数在研究函数中的应用,突出考查了数形结合、函数与方程、等价转化等数学思想方法.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=x2ex-1-
1
3
x3-x2(x∈R)

(1)求函数y=f(x)的单调区间;
(2)求y=f(x)在[-1,2]上的最小值;
(3)当x∈(1,+∞)时,用数学归纳法证明:?n∈N*,ex-1
xn
n!

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
x
x+1
(x>0)
,观察:f1(x)=f(x)=
x
x+1
f2(x)=f(f1(x))=
x
2x+1
f3(x)=f(f2(x))=
x
3x+1
f4(x)=f(f3(x))=
x
4x+1
,根据以上事实,由归纳推理可得:当n∈N+且n≥2时,fn(x)=f(fn-1(x))=
x
nx+1
x
nx+1

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a,b,c分别为内角A,B,C的对边,且b2+c2-a2=bc.向量
m
=(
3
sin
x
2
,1)  ,
n
=(cos
x
2
cos2
x
2
)

(Ⅰ)求角A的大小;
(Ⅱ)设函数f(x)=
m
n
,当f(B)取最大值
3
2
时,判断△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
x2+1
-ax,其中a>0

(1)解不等式f(x)≤1
(2)求证:当a≥1时,函数f(x)在区间[0,+∞)上是单调函数
(3)求使f(x)>0对一切x∈R*恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
a
3
x3+
1-a
2
x2-x
,a∈R.
(1)当a=-2时,求函数f(x)的单调递减区间;
(2)当a≠-1时,求函数f(x)的极小值.

查看答案和解析>>

同步练习册答案