精英家教网 > 高中数学 > 题目详情
7.若不等式x2-kx+k-1=0对x∈(1,2)恒成立,则实数k的取值范围是(  )
A.(-∞,2)B.(-∞,2]C.(2,+∞)D.[2,+∞)

分析 根据题意,分离参数,利用函数的单调性,即可得到实数k的取值范围.

解答 解:不等式x2-kx+k-1>0可化为(1-x)k>1-x2
∵x∈(1,2)
∴k<$\frac{1-{x}^{2}}{1-x}$=1+x
∴y=1+x是一个增函数,则1+x∈(2,3)
∴k≤2
∴实数k取值范围是(-∞,2]
故选:B

点评 本题考查一元二次不等式的应用,解题的关键是分离参数,利用函数的单调性确定参数的范围.属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.设双曲线$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{{b}^{2}}$=1(b>0)的焦点为F1、F2,P为该双曲线上的一点,若|PF1|=5,则|PF2|=11.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=|2x+3|+|2x-1|
(1)求不等式f(x)≤5的解集;
(2)若关于x的不等式f(x)<|m-2|的解集非空,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的左右焦点分别为F1,F2,过右焦点F2的直线交双曲线右支于A、B两点,连结AF1、BF1,若|AB|=|BF1|且$∠AB{F_1}={90^o}$,则双曲线的离心率为(  )
A.$5-2\sqrt{2}$B.$\sqrt{5-2\sqrt{2}}$C.$6-3\sqrt{2}$D.$\sqrt{6-3\sqrt{2}}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知向量$\vec a=({1,1})$,且$2\vec b-\vec a=({-5,1})$,则$\vec b$在$\vec a$上的投影为-$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.由数字0,1,2,3组成没有重复数字的四位数有18个(用数字作答)其中数字0,1相邻的四位数有10个(用数字作答).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.下列判断正确的是④.(填写所有正确的序号)
①若sinx+siny=$\frac{1}{3}$,则siny-cos2x的最大值为$\frac{4}{3}$;
②函数y=sin(2x+$\frac{π}{4}$)的单调增区间是[kπ-$\frac{π}{8}$,kπ+$\frac{3π}{8}$],k∈Z;
③函数f(x)=$\frac{1+sinx-cosx}{1+sinx+cosx}$是奇函数;
④函数y=tan$\frac{x}{2}$-$\frac{1}{sinx}$的最小正周期是π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知集合A={x|y=$\sqrt{lg(1-x)}$},B={y|y≥-1},那么A∩B=(  )
A.[-1,0]B.[-1,1)C.(-1,+∞)D.(0,1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.公元五世纪,数学家祖冲之估计圆周率π的值的范围是3.1415926<π<3.1415927,为纪念祖冲之在圆周率的成就,把3.1415926称为“祖率”,这是中国数学的伟大成就.某小学教师为帮助同学们了解“祖率”,让同学们从小数点后的7位数字1,4,1,5,9,2,6随机选取两位数字,整数部分3不变,那么得到的数字大于3.14的概率为(  )
A.$\frac{28}{31}$B.$\frac{19}{21}$C.$\frac{22}{31}$D.$\frac{17}{21}$

查看答案和解析>>

同步练习册答案