(07年湖南卷文)(14分)
如图,已知直二面角,直线CA和平面所成的角为.
(Ⅰ)证明;
(Ⅱ)求二面角的大小.
解析:(I)在平面内过点作于点,连结.
因为,,所以,又因为,所以.
而,所以,.从而.又,
所以平面.因为平面,故.
(II)解法一:由(I)知,,又,,,所以.
过点作于点,连结,由三垂线定理知,.
故是二面角的平面角.
由(I)知,,所以是和平面所成的角,则,
不妨设,则,.
在中,,所以,
于是在中,.
故二面角的大小为.
解法二:由(I)知,,,,故可以为原点,分别以直线为轴,轴,轴建立空间直角坐标系(如图).
因为,所以是和平面所成的角,则.
不妨设,则,.
在中,,
所以.
则相关各点的坐标分别是
,,,.
所以,.
设是平面的一个法向量,由得
取,得.
易知是平面的一个法向量.
设二面角的平面角为,由图可知,.
所以.
故二面角的大小为.
科目:高中数学 来源: 题型:
(07年湖南卷文)根据某水文观测点的历史统计数据,得到某条河流水位的频率分布直方图(如图2),从图中可以看出,该水文观测点平均至少一百年才遇到一次的洪水的最低水位是
A.48米 B. 49米 C. 50米 D. 51米
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com