精英家教网 > 高中数学 > 题目详情
函数f(x)=(1+x)2-ln(1+x)2
(1)求函数f(x)的单调区间;
(2)若关于x的方程f(x)=x2+a在[0,2]恰有两个零点,求实数a的取值范围.
分析:(1)对f(x)进行求导,利用导数研究函数f(x)的单调区间;
(2)可以记g(x)=x-a+1-ln(1+x)2,对其进行求导利用导数研究其单调区间,将问题转化为方程f(x)=x2+x+a在[0,2]上恰有两个相异的实根,根据二次函数的性质求出a的范围;
解答:解:(1)函数的定义域为(-∞,-1)∪(-1,+∞),
f(x)=2[(x+1)-
1
x+1
]-
2x(x+2)
x+1

由f′(x)>0,得-2<x<-1或x>0,
由f′(x)<0,得x<-2或-1<x<0,
所以f(x)的递增区间是(-2,-1),(0,+∞)
递减区间是(-∞,-2),(-1,0)
(2)方程f(x)=x2+x+a,即x-a+1-ln(1+x)2=0,
记g(x)=x-a+1-ln(1+x)2,则g′(x)=1-
2
1+x
=
x-1
x+1

由g′(x)>0,得x<-1,或x>1;
由g′(x)<0,得-1<x<1;
所以g(x)在[0,1]在上单调递减,在[1,2]上单调递增,
为使f(x)=x2+x+a在[0,2]上恰有两个相异的实根,
只需g(x)=0在[0,1)和(1,2]上各有一个实根,于是有
g(0)≥0
g(1)<0
g(2)≥0
-a+1≥0
2-a-2ln2<0
3-a-2ln3≥0

解得2-2ln2<a≤3-2lm3,
故实数a的取值范围是(2-2ln2,3-2ln3];
点评:本题主要考查导函数的正负与原函数的单调性之间的关系,即当导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减,还考查了数学中的转化思想,是一道中档题;
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

可推得函数f(x)=ax2-2x+1在区间[1,2]上为增函数的一个条件是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-
2x4x+1
(a∈R).
(1)判断函数f(x)的奇偶性;
(2)判断并证明函数f(x)在(0,+∞)上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2+bx-1满足以下两个条件:
①函数f(x)的值域为[-2,+∞);
②任意x∈R,恒有f(-1+x)=f(-1-x)成立.
(1)求f(x)的解析式;
(2)设F(x)=f(-x)-kf(x),若F(x)在[-2,2]上是减函数,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3+ax2-1,x∈R,a∈R.
(Ⅰ) 设对任意x∈(-∞,0],f(x)≤x恒成立,求a的取值范围;
(Ⅱ) 是否存在实数a,使得满足f(t)=4t2-2alnt的实数t有且仅有一个?若存在,求出所有这样的a;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=x2-2ax+1在区间[-1,2]上的最小值是f(2),则a的取值范围是
a≥2
a≥2

查看答案和解析>>

同步练习册答案