精英家教网 > 高中数学 > 题目详情
请先阅读:在等式cos2x=2cos2x-1 (x∈R)的两边对x求导(cos2x)′=(2cos2x-1)′,由求导法则得(-sin2x)·2=4cosx(-sinx),化简后得等式sin2x=2sinxcosx,
(Ⅰ)利用上述想法(或者其他方法),试由等式(x∈R,整数n≥2),证明:
(Ⅱ)对于整数n≥3,求证:
(ⅰ)
(ⅱ)
(ⅲ)
证明:(Ⅰ)在等式两边对x求导,得

移项得。(*)
(Ⅱ)(ⅰ)在(*)式中,令x=-1,
整理,得
所以
(ⅱ)由(Ⅰ)知
两边对x求导,得
在上式中令x= -1,得

亦即,①
又由(ⅰ)知,,②
由①+②,得
(ⅲ)将等式两边在[0,1]上对x积分,

由微积分基本定理,得

所以
练习册系列答案
相关习题

科目:高中数学 来源: 题型:阅读理解

请先阅读:
在等式cos2x=2cos2x-1(x∈R)的两边求导,得:(cos2x)′=(2cos2x-1)′,由求导法则,得(-sin2x)•2=4cosx•(-sinx),化简得等式:sin2x=2cosx•sinx.
(1)利用上题的想法(或其他方法),结合等式(1+x)n=Cn0+Cn1x+Cn2x2+…+Cnnxn(x∈R,正整数n≥2),证明:n[(1+x)n-1-1]=
n
k=2
k
C
k
n
xk-1

(2)对于正整数n≥3,求证:
(i)
n
k=1
(-1)kk
C
k
n
=0

(ii)
n
k=1
(-1)kk2
C
k
n
=0

(iii)
n
k=1
1
k+1
C
k
n
=
2n+1-1
n+1

查看答案和解析>>

科目:高中数学 来源: 题型:

请先阅读:

在等式)的两边求导,得:

由求导法则,得,化简得等式:

(1)利用上题的想法(或其他方法),结合等式 (,正整数),证明:

(2)对于正整数,求证:

(i);  (ii);  (iii)

查看答案和解析>>

科目:高中数学 来源:2008年普通高等学校招生全国统一考试数学试题(江苏卷) 题型:解答题

请先阅读:
在等式)的两边求导,得:
由求导法则,得,化简得等式:
(1)利用上题的想法(或其他方法),结合等式 (,正整数),证明:
(2)对于正整数,求证:
(i); (ii); (iii)

查看答案和解析>>

科目:高中数学 来源:2008年普通高等学校招生全国统一考试数学试题(江苏卷) 题型:解答题

请先阅读:

在等式)的两边求导,得:

由求导法则,得,化简得等式:

(1)利用上题的想法(或其他方法),结合等式 (,正整数),证明:

(2)对于正整数,求证:

(i);  (ii);  (iii)

 

查看答案和解析>>

科目:高中数学 来源: 题型:

(江苏卷23)请先阅读:在等式)的两边求导,得:

,由求导法则,得,化简得等式:

(1)利用上题的想法(或其他方法),结合等式(1+xn,正整数),证明:

(2)对于正整数,求证:(i)=0;

(ii)=0;

(iii)

查看答案和解析>>

同步练习册答案