精英家教网 > 高中数学 > 题目详情
已知{an}为等比数列,a1=1,前n项和为Sn,且
S6
S3
=28
,数列{bn}的前n项和为Tn,且点(n,Tn)均在抛物线y=
1
2
x2+
1
2
x
上.
(1)求{an}和{bn}的通项公式;
(2)设cn=an•bn,求{cn}的前n项和S′n
(1)设等比数列的公比为q,则由
S6
S3
=28
可知q≠1
S6
S3
=28
,∴
1-q6
1-q3
=1+q3=28
,∴q=3
∵a1=1,∴an=3n-1
∵数列{bn}的前n项和为Tn,且点(n,Tn)均在抛物线y=
1
2
x2+
1
2
x

Tn=
1
2
n2+
1
2
n

当n≥2时,bn=Tn-Tn-1= (
1
2
n2+
1
2
n)-[
1
2
(n-1)2+
1
2
(n-1)]
=n
∵b1=T1=1
∴bn=n
(2)∵cn=an•bn=n•3n-1,∴S'n=1•30+2•31+3•32+…+n•3n-1
∴3S'n=1•31+2•32+…+(n-1)•3n-1+n•3n
两式相减,得-2S'n=1•30+1•31+1•32+…+1•3n-1-n•3n=
1-3n
1-3
-n•3n=
3n-1
2
-n•3n=
(1-2n)3n-1
2

得  S'n=
(2n-1)3n+1
4
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设{an}为等比数例,Tn=na1+(n-1)a2…+2an-1+an,已知T1=1,T2=4,
(1)求数列{an}的首项和公比;
(2)求数列{Tn}的通项公式.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年贵州省遵义四中高三(上)第二次月考数学试卷(理科)(解析版) 题型:解答题

设{an}为等比数例,Tn=na1+(n-1)a2…+2an-1+an,已知T1=1,T2=4,
(1)求数列{an}的首项和公比;
(2)求数列{Tn}的通项公式.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年贵州省遵义四中高三(上)第二次月考数学试卷(文科)(解析版) 题型:解答题

设{an}为等比数例,Tn=na1+(n-1)a2…+2an-1+an,已知T1=1,T2=4,
(1)求数列{an}的首项和公比;
(2)求数列{Tn}的通项公式.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年贵州省遵义四中高三(上)第二次月考数学试卷(理科)(解析版) 题型:解答题

设{an}为等比数例,Tn=na1+(n-1)a2…+2an-1+an,已知T1=1,T2=4,
(1)求数列{an}的首项和公比;
(2)求数列{Tn}的通项公式.

查看答案和解析>>

科目:高中数学 来源:2011年高三数学复习(第6章 数列):6.3 等差数列、等比数列(二)(解析版) 题型:解答题

设{an}为等比数例,Tn=na1+(n-1)a2…+2an-1+an,已知T1=1,T2=4,
(1)求数列{an}的首项和公比;
(2)求数列{Tn}的通项公式.

查看答案和解析>>

同步练习册答案