精英家教网 > 高中数学 > 题目详情
已知f(α)=
tan(3π-α)•cos(4π-α)•sin(
π
2
+α)
cos(π+α)

(Ⅰ)化简f(α); 
(Ⅱ)若f(
π
2
-α)=-
3
5
,且α是第二象限角,求tanα.
分析:(Ⅰ)f(α)利用诱导公式化简,即可得到结果;
(Ⅱ)根据第一问确定的f(α),由f(α)=-
3
5
,求出cosα的值,再由α为第二象限角,利用同角三角函数间的基本关系求出sinα的值,即可确定出tanα的值.
解答:解:(Ⅰ)f(α)=
-tanα•cosα•cosα
-cosα
=sinα;
(Ⅱ)由f(
π
2
-α)=sin(
π
2
-α)=-
3
5
,得cosα=-
3
5

∵α是第二象限角,
∴sinα=
1-cos2α
=
4
5

则tanα=
sinα
cosα
=-
4
3
点评:此题考查了运用诱导公式化简求值,以及同角三角函数间的基本关系,熟练掌握诱导公式是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(α)=
sin(5π-α)•cos(α+
2
)•cos(π+α)
sin(α-
2
)•cos(α+
π
2
)•tan(α-3π)

(1)化简f(α)
(2)若α是第三象限角,且cos(
2
-α)=
1
5
,求f(α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法:
①若sinθ=-
4
5
,tanθ>0,则cosθ=
3
5

②若f(x)=ax2+(2a+b)x+2(其中x∈[2a-1,a+4])是偶函数,则实数b=2;
③f(x)=
2011-x2
+
x2-2011
既是奇函数又是偶函数;
④已知f(x)是定义在R上的奇函数,若当x∈[0,+∞)时,f(x)=x(1+x),则当x∈R时,f(x)=x(1+|x|).其中所有正确说法的序号是
②③④
②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(α)=
sin(3π-α)cos(2π-α)tan(
π
2
-α)
cot(-α-π)sin(-π-α)

(1)化简f(α);
(2)若α是第四象限角,且sin(α+π)=
4
5
,求f(α)的值;
(3)若α=-
37
3
π
,求f(α)的值.

查看答案和解析>>

科目:高中数学 来源:成功之路·突破重点线·数学(学生用书) 题型:013

已知f(tanθ)=sin2θ,则f(x)是

[  ]

A.2xcos2θ
B.xcos2θ
C.
D.

查看答案和解析>>

同步练习册答案