精英家教网 > 高中数学 > 题目详情

(坐标系与参数方程选做题)
在极坐标系中,已知点A(1,数学公式),点P是曲线ρsin2θ=4cosθ上任意一点,设点P到直线ρcosθ+1=0的距离为d,则丨PA丨+d的最小值为________.


分析:先利用直角坐标与极坐标间的关系,将点A的极坐标、直线及曲线的极坐标方程化成直角坐标或方程,再利用直角坐标方程的形式,由抛物线的定义可得丨PA丨+d=|PF|+|PA|≥|AF|,当A,P,F三点共线时,其和最小,再求出|AF|的值即可.
解答:解:点A(1,)的直角坐标为A(0,1),
曲线曲线ρsin2θ=4cosθ的普通方程为y2=4x,是抛物线.
直线ρcosθ+1=0的直角坐标方程为x+1=0,是准线.
由抛物线定义,点P到抛物线准线的距离等于它到焦点A(0,1)的距离,
所以当A,P,F三点共线时,其和最小,
最小为|AF|=
故答案为:
点评:本小题主要考查点的极坐标和直角坐标的互化、抛物线的简单性质,解题的关键是抛物线的定义解题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(坐标系与参数方程选做题)以原点为极点,x轴的正半轴为极轴,单位长度一致的坐标系下,已知曲线C1的参数方程为
x=2cosθ+3
y=2sinθ
(θ为参数),曲线C2的极坐标方程为ρsinθ=a,则这两曲线相切时实数a的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(坐标系与参数方程选做题)在极坐标系(ρ,θ)(ρ>0,0≤θ<
π
2
)中,曲线ρ=2sinθ与ρ=2cosθ的交点的极坐标为
2
π
4
2
π
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(坐标系与参数方程选做题)
曲线
x=t
y=
1
3
t2
(t为参数且t>0)与直线ρsinθ=1(ρ∈R,0≤θ<π)交点M的极坐标为
(2,
π
6
(2,
π
6

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)(坐标系与参数方程选做题)已知在极坐标系下,点A(1,
π
3
),B(3,
3
),O是极点,则△AOB的面积等于
3
3
4
3
3
4

(2)(不等式选做题)关于x的不等式|
x+1
x-1
|>
x+1
x-1
的解集是
(-1,1)
(-1,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

(坐标系与参数方程选做题)在极坐标系中,已知点P(2,
π3
),则过点P且平行于极轴的直线的极坐标方程为
 

查看答案和解析>>

同步练习册答案