15¡¢¸ø³öÃüÌ⣺
£¨1£©ÔÚ¿Õ¼äÀ´¹Ö±ÓÚͬһƽÃæµÄÁ½¸öƽÃæƽÐУ»
£¨2£©Éèl£¬mÊDz»Í¬µÄÖ±Ïߣ¬¦ÁÊÇÒ»¸öƽÃ棬Èôl¡Í¦Á£¬l¡Îm£¬Ôòm¡Í¦Á£»
£¨3£©ÒÑÖª¦Á£¬¦Â±íʾÁ½¸ö²»Í¬Æ½Ã棬mΪƽÃæ¦ÁÄÚµÄÒ»ÌõÖ±Ïߣ¬Ôò¡°¦Á¡Í¦Â¡±ÊÇ¡°m¡Í¦Â¡±µÄ³äÒªÌõ¼þ£»
£¨4£©ÈôµãPµ½Èý½ÇÐÎÈý¸ö¶¥µãµÄ¾àÀëÏàµÈ£¬ÔòµãPÔÚ¸ÃÈý½ÇÐÎËùÔÚƽÃæÄÚµÄÉäÓ°ÊǸÃÈý½ÇÐεÄÍâÐÄ£»
£¨5£©a£¬bÊÇÁ½ÌõÒìÃæÖ±Ïߣ¬PΪ¿Õ¼äÒ»µã£¬¹ýP×Ü¿ÉÒÔ×÷Ò»¸öƽÃæÓëa£¬bÖ®Ò»´¹Ö±£¬ÓëÁíÒ»¸öƽÐУ®
ÆäÖÐÕýÈ·µÄÃüÌâÊÇ
£¨2£©£¨4£©
£¨Ö»ÌîÐòºÅ£©£®
·ÖÎö£º£¨1£©ÔÚ¿Õ¼äÀ´¹Ö±ÓÚͬһƽÃæµÄÁ½¸öƽÃæƽÐУ¬¿ÉÓÉÃæÃæµÄλÖùØϵ֤Ã÷£»
£¨2£©Éèl£¬mÊDz»Í¬µÄÖ±Ïߣ¬¦ÁÊÇÒ»¸öƽÃ棬Èôl¡Í¦Á£¬l¡Îm£¬Ôòm¡Í¦Á£¬¿ÉÓÉÏßÃæ´¹Ö±µÄÌõ¼þÖ¤Ã÷£»
£¨3£©ÒÑÖª¦Á£¬¦Â±íʾÁ½¸ö²»Í¬Æ½Ã棬mΪƽÃæ¦ÁÄÚµÄÒ»ÌõÖ±Ïߣ¬Ôò¡°¦Á¡Í¦Â¡±ÊÇ¡°m¡Í¦Â¡±µÄ³äÒªÌõ¼þ£¬¿ÉÓÉÃæÃæ´¹Ö±µÄÐÔÖʶ¨Àí½øÐÐÅжϣ»
£¨4£©ÈôµãPµ½Èý½ÇÐÎÈý¸ö¶¥µãµÄ¾àÀëÏàµÈ£¬ÔòµãPÔÚ¸ÃÈý½ÇÐÎËùÔÚƽÃæÄÚµÄÉäÓ°ÊǸÃÈý½ÇÐεÄÍâÐÄ£¬¿ÉÓÉͶӰµÄ¸ÅÄî½áºÏÍâÐĵĶ¨Òå½øÐÐÅжϣ»
£¨5£©a£¬bÊÇÁ½ÌõÒìÃæÖ±Ïߣ¬PΪ¿Õ¼äÒ»µã£¬¹ýP×Ü¿ÉÒÔ×÷Ò»¸öƽÃæÓëa£¬bÖ®Ò»´¹Ö±£¬ÓëÁíÒ»¸öƽÐУ¬¿ÉÓÉÏßÃæλÖùØϵÅжϣ®
½â´ð£º½â£º£¨1£©ÔÚ¿Õ¼äÀ´¹Ö±ÓÚͬһƽÃæµÄÁ½¸öƽÃæƽÐУ¬²»ÕýÈ·£¬Á½Õß¿ÉÄÜÏཻ£»
£¨2£©Éèl£¬mÊDz»Í¬µÄÖ±Ïߣ¬¦ÁÊÇÒ»¸öƽÃ棬Èôl¡Í¦Á£¬l¡Îm£¬Ôòm¡Í¦Á£¬´ËÊÇÒ»¸öÕýÈ·ÃüÌ⣬Á½ÌõƽÐÐÏßÖеÄÒ»Ìõ´¹Ö±ÓÚÒ»¸öƽÃ棬ÔòÁíÒ»¸öÒ²´¹Ö±ÓÚÕâ¸öƽÃ棻
£¨3£©ÒÑÖª¦Á£¬¦Â±íʾÁ½¸ö²»Í¬Æ½Ã棬mΪƽÃæ¦ÁÄÚµÄÒ»ÌõÖ±Ïߣ¬Ôò¡°¦Á¡Í¦Â¡±ÊÇ¡°m¡Í¦Â¡±µÄ³äÒªÌõ¼þ£¬²»ÕýÈ·£¬ÒòΪÁ½Ãæ´¹Ö±£¬Ò»¸öÃæÖеÄÏßÓëÁíÒ»¸öÃæµÄ¹ØϵÊÇƽÐС¢Ïཻ£¬ÔÚÁíÒ»¸öÃæÄÚ¶¼ÓпÉÄÜ£»
£¨4£©ÈôµãPµ½Èý½ÇÐÎÈý¸ö¶¥µãµÄ¾àÀëÏàµÈ£¬ÔòµãPÔÚ¸ÃÈý½ÇÐÎËùÔÚƽÃæÄÚµÄÉäÓ°ÊǸÃÈý½ÇÐεÄÍâÐÄ£¬´ËÃüÌâÕýÈ·£¬ÓÉÈý²àÀâÔÚµ×ÃæÉϵÄͶӰÏàµÈ£¬·ûºÏÍâÐĵĶ¨Ò壻
£¨5£©a£¬bÊÇÁ½ÌõÒìÃæÖ±Ïߣ¬PΪ¿Õ¼äÒ»µã£¬¹ýP×Ü¿ÉÒÔ×÷Ò»¸öƽÃæÓëa£¬bÖ®Ò»´¹Ö±£¬ÓëÁíÒ»¸öƽÐУ¬²»Ò»¶¨ÕýÈ·£¬ÕâÑùµÄƽÃæµ±´¹Ö±ÓÚÒ»ÏßµÄƽÃæÇ¡ºÃ¹ýÁíÒ»Ïßʱ£¬Ôò²»³ÉÁ¢£®
¹Ê´ð°¸Îª£º£¨2£©£¨4£©
µãÆÀ£º±¾Ì⿼²é¿Õ¼äÖÐÖ±ÏßÓëƽÃæÖ®¼äµÄλÖùØϵµÄÅжϣ¬Öص㿼²éÁ˶ԿռäÖÐÏßÃæλÖõÄÁ¢Ìå¸ÐÖªÄÜÁ¦£¬ÊôÓÚ»ù±¾ÌâÐÍ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¸ø³öÏÂÁÐËĸöÃüÌ⣺
£¨1£©µÈ±ÈÊýÁеÄÇ°nÏîºÍ¿ÉÄÜΪÁ㣻
£¨2£©¶Ôk¡ÊR£¬Ö±Ïßy-kx-1=0ÓëÍÖÔ²
x2
5
+
y2
m
=1
ºãÓй«¹²µã£¬ÊµÊýmµÄÈ¡Öµ·¶Î§ÊÇm¡Ý1
£¨3£©ÏòÁ¿
a
=(x2£¬x+1)
£¬
b
=(1-x£¬t)
£¬Èôº¯Êýf£¨x£©=
a
-
b
ÔÚÇø¼äÉÏÊÇÔöº¯Êý£¬ÔòʵÊýtµÄÈ¡Öµ·¶Î§ÊÇ£¨5£¬+¡Þ£©£»
£¨4£©ÎÒÃǶ¨Òå·Ç¿Õ¼¯ºÏAµÄÕæ×Ó¼¯µÄÕæ×Ó¼¯ÎªAµÄ¡°ËO¡±£¬Ôò¼¯ºÏ{2£¬4£¬6£¬8£¬10}µÄ¡°ËO¡±ÓÐ26¸ö£®
ÆäÖÐÕýÈ·µÄÃüÌâÓÐ
 
£¨Ìî·¬ºÅ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¸ø³öÏÂÁÐËĸöÃüÌ⣺
¢ÙÃüÌâp£º?x¡ÊR£¬sin¡Ü1£¬Ôò©Vp£º?x¡ÊR£¬sinx£¼1£¬
¢Úµ±a¡Ý1ʱ£¬²»µÈʽ|x-4|+|x-3|£¼aµÄ½â¼¯Îª·Ç¿Õ£»
¢Ûµ±x£¾1ʱ£¬ÓÐlnx+
1
lnx
¡Ý2
¢ÜÉèÓÐÎå¸öº¯Êý.y=x£¬y=x
1
2
£¬y=x3£¬y=x2£¬y=2x
£¬ÆäÖмÈÊÇżº¯ÊýÓÖÔÚ£¨0£¬+¡Þ£© ÉÏÊÇÔöº¯ÊýµÄÓÐ2¸ö£®
ÆäÖÐÕæÃüÌâµÄÐòºÅÊÇ
¢Û
¢Û
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªa¡ÊR£¬¸ø³öÏÂÃæÁ½¸öÃüÌ⣺ÃüÌâp£º¡°ÔÚx¡Ê[1£¬2]ÄÚ£¬²»µÈʽx2+2ax-2£¾0ºã³ÉÁ¢¡±£»ÃüÌâq£º¡°¹ØÓÚxµÄ²»µÈʽ£¨a2-1£©x2+£¨a-1£©x-2£¾0µÄ½â¼¯Îª¿Õ¼¯¡±£»µ±p¡¢qÖÐÓÐÇÒ½öÓÐÒ»¸öΪÕæÃüÌâʱ£¬ÇóʵÊýaµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¸ø³öÏÂÁÐËĸöÃüÌ⣺
¢ÙÃüÌâp£º?x¡ÊR£¬sinx¡Ü1£¬Ôò©Vp£º?x¡ÊR£¬sinx£¼1£»
¢Úµ±a¡Ý1ʱ£¬²»µÈʽ|x-4|+|x-3|£¼aµÄ½â¼¯Îª·Ç¿Õ£»
¢Ûµ±x£¾1ʱ£¬ÓÐ1nx+
1
1nx
¡Ý2
£»
¢ÜÉèÓÐÎå¸öº¯Êýy=x-1£¬y=x
1
2
£¬y=x3£¬y=x2£¬y=2|x|
£¬ÆäÖмÈÊÇżº¯ÊýÓÖÔÚ£¨0£¬+¡Þ£©ÉÏÊÇÔöº¯ÊýµÄÓÐ2¸ö£®
ÆäÖÐÕæÃüÌâµÄÐòºÅÊÇ
¢Û¢Ü
¢Û¢Ü
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¸ø³öÏÂÁÐËĸöÃüÌ⣺
£¨1£©ÒÑÖªº¯Êýf£¨x£©=
1
2
x2   x¡Ü2
log2(x+a)  x£¾2
ÔÚ¶¨ÒåÓòÄÚÊÇÁ¬Ðøº¯Êý£¬ÊýÁÐ{an}ͨÏʽΪan=
1
an
£¬ÔòÊýÁÐ{an}µÄËùÓÐÏîÖ®ºÍΪ1£®
£¨2£©¹ýµãP£¨3£¬3£©ÓëÇúÏߣ¨x-2£©2-
(y-1)2
4
=1ÓÐΨһ¹«¹²µãµÄÖ±ÏßÓÐÇÒÖ»ÓÐÁ½Ìõ£®
£¨3£©ÏòÁ¿
a
=(x2£¬x+1)
£¬
b
=(1-x£¬t)
£¬Èôº¯Êýf£¨x£©=
a
b
ÔÚÇø¼ä[-1£¬1]ÉÏÊÇÔöº¯Êý£¬ÔòʵÊýtµÄÈ¡Öµ·¶Î§ÊÇ£¨5£¬+¡Þ£©£»
£¨4£©ÎÒÃǶ¨Òå·Ç¿Õ¼¯ºÏAµÄÕæ×Ó¼¯µÄÕæ×Ó¼¯ÎªAµÄ¡°ËO¡±£¬Ôò¼¯ºÏ{2£¬4£¬6£¬8£¬10}µÄ¡°ËO¡±ÓÐ26¸ö£®
ÆäÖÐÕýÈ·µÄÃüÌâÓÐ
£¨1£©£¨2£©£¨4£©
£¨1£©£¨2£©£¨4£©
£¨ÌîÐòºÅ£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸