精英家教网 > 高中数学 > 题目详情

直线y=x-1与抛物线y2=4x相交于A,B两点,则|AB|=________.

8
分析:求出抛物线的焦点,可得直线AB恰好经过抛物线的焦点F(1,0),再由抛物线的定义可得|AB|=|AF|+|BF|=x1+x2+p=x1+x2+2,最后由直线AB与抛物线消去y得关于x的方程,结合一元二次方程根与系数的关系,可得x1+x2=6,从而得到AB的长为8.
解答:∵抛物线方程为y2=4x,
∴2p=4,=1,可得焦点为F(1,0)
∵直线y=x-1交x轴于点(1,0)
∴直线AB经过抛物线的焦点F
设A(x1,y1),B(x2,y2),根据抛物线的定义可得|AF|=x1+1,|BF|=x2+1,
所以|AB|=|AF|+|BF|=x1+x2+2,
消去y,得x2-6x+1=0
∴根据韦达定理,得x1+x2=6
因此,|AB|=|x1+x2+2=8,
故答案为:8
点评:本题给出抛物线的一条焦点弦所在的直线方程方程,求该焦点弦的长度,着重考查了抛物线的简单性质和直线与抛物线的关系等知识点,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在直角坐标平面上有一点列P1(x1,y1),P2(x2,y2),…,Pn(xn,yn),…,对一切正整数n,点Pn在函数y=3x+
13
4
的图象上,且Pn的横坐标构成以-
5
2
为首项,-1为公差的等差数列{xn}.
(1)求点Pn的坐标;
(2)设抛物线列C1,C2,C3,…,Cn,…中的每一条的对称轴都垂直于x轴,抛物线Cn的顶点为Pn,且过点Dn(0,n2+1).记与抛物线Cn相切于点Dn的直线的斜率为kn,求
1
k1k2
+
1
k2k3
+…+
1
kn-1kn

(3)设S={x|x=2xn,n∈N*},T={y|y=4yn,n∈N*},等差数列{an}的任一项an∈S∩T,其中a1是S∩T中的最大数,-265<a10<-125,求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标上有一点列P1(x1,y1),P2(x2,y2)…,Pn(xn,yn)…,对一切正整数n,点Pn在函数
y=3x+
13
4
的图象上,且Pn的横坐标构成以-
5
2
为首项,-1为公差的等差数列{xn}.
(Ⅰ)求点Pn的坐标;
(Ⅱ)设抛物线列C1,C2,C3,…Cn,…中的每一条的对称轴都垂直于x轴,抛物线Cn的顶点为Pn,且过点Dn(0,n2+1),记与抛物线Cn相切于点Dn的直线的斜率为Kn,求
1
k1k2
+
1
k2k3
+…+
1
knkn+1
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

由一个小区历年市场行情调查得知,某一种蔬菜在一年12个月内每月销售量P(t)(单位:吨)与上市时间t(单位:月)的关系大致如图(1)所示的折线ABCDE表示,销售价格Q(t)(单位:元/千克)与上市时间t(单位:月)的大致关系如图(2)所示的抛物线段GHR表示(H为顶点).
(Ⅰ)请分别写出P(t),Q(t)关于t的函数关系式,并求出在这一年内3到6月份的销售额最大的月份?
(Ⅱ)图(1)中由四条线段所在直线 围成的平面区域为M,动点P(x,y)在M内(包括边界),求z=x-5y的最大值;
(Ⅲ) 由(Ⅱ),将动点P(x,y)所满足的条件及所求的最大值由加法运算类比到乘法运算(如1≤2x-3y≤3类比为1≤
x2y3
≤3
),试列出P(x,y)所满足的条件,并求出相应的最大值.

查看答案和解析>>

科目:高中数学 来源:2010-2011年江西省高二下学期第一次月考数学文卷 题型:解答题

(本小题满分13分)

已知双曲线C: =1(a>0,b>0)的离心率为焦点到渐近线的距离为

(1)求双曲线C的方程;

(2)已知直线x-y+m=0与双曲线C交于不同的两点A,B,且线段AB的中点在抛物

线y2=4 x上,求m的值.

 

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标平面上有一点列Pn(xn,yn)(n∈N*),点Pn位于直线y=3x+上,且Pn的横坐标构成以为首项,-1为公差的等差数列{xn}.

(1)求点Pn的坐标;

(2)设抛物线列C1,C2,…,Cn,…中的每一条的对称轴都垂直于x轴,第n条抛物线Cn的顶点为Pn,且经过点Dn(0,n2+1)(n∈N*).记与抛物线Cn相切于点Dn的直线的斜率为kn,求证:++…+;

(3)设S={x|x=2xn,n∈N*},T={y|y=4yn,n∈N*},等差数列{an}的任意一项an∈S∩T,其中a1是S∩T中的最大数,且-256<a10<-125,求数列{an}的通项公式.

查看答案和解析>>

同步练习册答案