精英家教网 > 高中数学 > 题目详情
直线l1:x+(m+1)y+m-2=0与l2:mx+2y+8=0平行,则m的值为(  )
A、1B、-2C、2D、-2或1
考点:直线的一般式方程与直线的平行关系
专题:直线与圆
分析:把直线方程化为斜截式,利用平行线与斜率、截距的关系即可得出.
解答: 解:直线l1:x+(m+1)y+m-2=0与l2:mx+2y+8=0分别化为:y=-
1
m+1
x+
2-m
m+1
y=-
m
2
x-4

∵两直线平行,∴-
1
m+1
=-
m
2
2-m
m+1
-4,解得m=1.
故选:A.
点评:本题考查了斜截式、平行线与斜率、截距的关系,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

双曲线
x2
2
-
y2
2
=1的实轴长为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

掷一个骰子的试验中,事件A表示“小于5的偶数点出现”,事件B表示“小于5的点数出现”,则一次试验中,事件A+
.
B
发生的概率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若a>b,则下列不等式正确的是(  )
A、a-3>b-3
B、a+2>b+1
C、ac>bc
D、
1
a
1
b

查看答案和解析>>

科目:高中数学 来源: 题型:

给出定理,圆内接四边形的对角互补直线l1:x+3y-7=0、l2:kx-y-2=0与x轴、y轴的正半轴所围成的四边形有外接圆,则k为何值时l1:x+3y-7=0和l2:kx-y-2=0与x轴、y轴所围成的四边形有外接圆?并求此外接圆的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(sin(x-
π
4
),cosx),
b
=(cos(x+
π
4
),cosx),函数f(x)=
a
b

(Ⅰ)若a∈(-
π
8
π
8
)且f(a)=
3
2
10
,求cos2a的值;
(Ⅱ)将函数y=f(x)的图象向左平移
π
4
个单位,再将所得图象上所有点的横坐标缩短为原来的一半(纵坐标不变),得到函数y=g(x)的图象,求函数g(x)在x∈[0,
π
4
]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正方形ABCD的边长为1,延长BA至E,使AE=1,连接EC、ED,则sin∠CED=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在函数①y=cos|2x|,②y=|cosx|,③y=cos(2x+
π
6
),④y=tan(2x-
π
4
)中,最小正周期为π的所有函数为(  )
A、①②③B、①③④
C、②④D、①③

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数y=x2lga+2x+4lga的最小值为-3,求实数a的值.

查看答案和解析>>

同步练习册答案