精英家教网 > 高中数学 > 题目详情
14.表面积为60π的球面上有四点S,A,B,C,且△ABC是等边三角形,球心O到平面ABC的距离为2,若平面SAB⊥平面ABC,则棱锥S-ABC体积的最大值为$\frac{121\sqrt{3}}{8}$.

分析 如图,由求得表面积可得球半径OB=$\sqrt{15}$,OD=2可得BD=$\sqrt{11}$,由△ABC是等边三角形可推出AB=$\sqrt{33}$,即△ABC面积为定值,故S在AB的中垂线上且位于平面ABC上方时,棱锥S-ABC体积的最大,过O作平面SAB的垂线段,垂足为H,则HE=OD=2,OH=DE=$\frac{\sqrt{11}}{2}$,SO=$\sqrt{15}$,可求得SH=$\frac{7}{2}$,即棱锥的高最大值为SE=$\frac{11}{2}$.从而可求得棱锥的最大值.

解答 解:过O作平面ABC的垂线段OD,垂足为D,过D作DE⊥AB,垂足为E,连接BD,则OD⊥BD,OD⊥DE,
∵4πOB2=60π,∴OB=$\sqrt{15}$,
又∵OD=2,∴BD=$\sqrt{O{B}^{2}-O{D}^{2}}$=$\sqrt{11}$,
∵△ABC是等边三角形,∴D是△ABC的中心,
∴DE=$\frac{1}{2}$BD=$\frac{\sqrt{11}}{2}$,∴AB=2BE=2$\sqrt{B{D}^{2}-A{D}^{2}}$=$\sqrt{33}$.
∴S△ABC=$\frac{\sqrt{3}}{4}$AB2=$\frac{33\sqrt{3}}{4}$,
由球的对称性可知当S在AB的中垂线上时,S到平面ABC的距离最大,
过O作平面SAB的垂线段SH,垂足为H,
∵平面SAB⊥平面ABC,DE⊥AB,平面SAB∩平面ABC=AB,DE?平面ABC,
∴DE⊥平面SAB,∵SE?平面SAB,∴DE⊥SE,
∴四边形ODEH是矩形,∴OH=DE=$\frac{\sqrt{11}}{2}$,HE=OD=2,
∵OS=OB=$\sqrt{15}$,∴SH=$\sqrt{O{S}^{2}-O{H}^{2}}$=$\frac{7}{2}$,∴SE=SH+HE=$\frac{11}{2}$.
∴V=$\frac{1}{3}$•S△ABC•SE=$\frac{1}{3}$•$\frac{33\sqrt{3}}{4}$•$\frac{11}{2}$=$\frac{121\sqrt{3}}{8}$.
故答案为$\frac{121\sqrt{3}}{8}$.

点评 本题考察了圆内接几何体的体积,寻找图中的数量关系是本题的难点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.设复数$\frac{1-i}{2+i}$=x+yi,其中x,y∈R,则x+y=(  )
A.$-\frac{2}{3}$B.$\frac{2}{3}$C.$\frac{2}{5}$D.$-\frac{2}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,已知四棱锥P-ABCD的底面ABCD是边长为1的正方形,PD⊥底面ABCD,且PD=1,点E,F分别是棱PB,AD的中点.
(Ⅰ)求证:EF⊥平面PBC;
(Ⅱ)求多面体PDFEC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知$sin(π+α)=-\frac{4}{5}$,α∈($\frac{π}{2}$,π).
(1)求tan(π-α)的值;
(2)求$\frac{sin2α+1}{cos2α}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列各组函数表示相等函数的是(  )
A.y=$\frac{{x}^{2}-4}{x-2}$与y=x+2B.y=$\sqrt{{x}^{2}-3}$与y=x-3
C.y=2x-1(x≥0)与s=2t-1(t≥0)D.y=x0与y=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若x、y满足约束条件$\left\{\begin{array}{l}{y≤x}\\{x+y≤a}\\{y≥-1}\end{array}\right.$,其中a=${∫}_{0}^{π}$(sinx+cosx)dx,则z=x+2y的最大值为(  )
A.1B.3C.-3D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设f(x)=kax-a-x(a>0且a≠1)是定义域为R的奇函数.
(1)求k的值;
(2)若f(1)>0,求不等式f(x2+2x)+f(x-4)>0的解集;
(3)若f(1)=$\frac{3}{2}$,且g(x)=a2x+a-2x-4f(x),求g(x)在区间[1,+∞)上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.计算:
(1)($\frac{1}{9}$)${\;}^{-\frac{3}{2}}$+8${\;}^{\frac{2}{3}}$+lg$\frac{1}{100}$;
(2)$\sqrt{(lo{g}_{2}5)^{2}-4lo{g}_{2}5+4}$+log2$\frac{1}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知P(x,y)为区域$\left\{\begin{array}{l}{{y}^{2}-4{x}^{2}≤0}\\{0≤x≤a}\end{array}\right.$内的任意一点,当该区域的面积为2时,z=x+2y的最大值是(  )
A.5B.0C.2D.2$\sqrt{2}$

查看答案和解析>>

同步练习册答案