精英家教网 > 高中数学 > 题目详情
18.写出下列各点的极坐标,如图所示.

分析 利用极坐标的定义即可得出.

解答 解:A(4,0),B$(1,\frac{π}{3})$,C$(3,\frac{2π}{3})$,D$(4,\frac{13π}{12})$,E$(2,\frac{5π}{4})$,F$(3,\frac{3π}{2})$,G$(4,\frac{5π}{3})$.

点评 本题考查了极坐标的定义,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知lga+lgb=2.求a+b的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,0≤φ<2π)的部分图象如图所示
(1)写出函数f(x)的最小正周期及解析式(不要求解题过程)
(2)将函数f(x)的图象上各点的横坐标伸长到原来的2倍,纵坐标不变,得到函数y=g(x)的图象.求函数g(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π),x∈R的最大值是1,且函数最大值与最小值间对应的横坐标最小距离为π,其图象经过点M($\frac{π}{3}$,$\frac{1}{2}$).
(Ⅰ)求f(x)的解析式;
(Ⅱ)设f(α)=$\frac{2\sqrt{5}}{5}$,f(β+$\frac{π}{2}$)=-$\frac{\sqrt{10}}{10}$,α∈(0,$\frac{π}{2}$),β∈(0,$\frac{π}{2}$),求sinα,cosβ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.写出n从1到10的二项式系数表.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.(1+2x)10的展开式中各项的系数和为310

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.把一根长为30cm的铁丝剪成两段,分别作钝角△ABC的两边AB和AC,并使∠BAC=120°,要使△ABC的周长最小,则AB和AC的长分别为15cm与15cm.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.一个家庭要将2个男孩3个女孩送到私立学校,有5所男子学校、8所女子学校,以及3所男女合校,如果每个孩子去不同的学校,这个家庭为它们的孩子可以选择多少组不同的5所学校?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.求下列函数的周期,最小值及对应的x值的集合,单调区间及对称中心.
(1)y=-3sin2x+1;
(2)y=sin($\frac{1}{2}$x+$\frac{π}{6}$),x∈[-2π,2π].

查看答案和解析>>

同步练习册答案