精英家教网 > 高中数学 > 题目详情

经过两圆x2+y2+3x-y=0和x2+y2+2x+y=0的交点的直线方程 ________.

x-2y=0
分析:把两个圆的方程相减得到的直线方程就是经过两圆交点的直线方程.
解答:把两圆x2+y2+3x-y=0和x2+y2+2x+y=0的方程相减得:x-2y=0,x-2y=0
故经过两圆x2+y2+3x-y=0和x2+y2+2x+y=0的交点的直线方程为 x-2y=0,
故答案为:x-2y=0.
点评:本题考查两圆公共弦所在直线方程的求法,把两个圆的方程相减得到的直线方程就是公共弦所在直线方程.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

圆心在直线x-y-4=0上,且经过两圆x2+y2-4x-3=0,x2+y2-4y-3=0的交点的圆的方程为(  )
A、x2+y2-6x+2y-3=0B、x2+y2+6x+2y-3=0C、x2+y2-6x-2y-3=0D、x2+y2+6x-2y-3=0

查看答案和解析>>

科目:高中数学 来源: 题型:

经过两圆x2+y2+6x-4=0和x2+y2+6y-28=0的交点的直线方程是
x-y+4=0
x-y+4=0

查看答案和解析>>

科目:高中数学 来源: 题型:

经过两圆x2+y2=9和(x+4)2+(y+3)2=8交点的直线方程为
4x+3y+13=0
4x+3y+13=0

查看答案和解析>>

科目:高中数学 来源: 题型:

求经过两圆x2+y2-2x-3=0与x2+y2-4x+2y+3=0的交点,且圆心在直线2x-y=0上的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C的圆心在直线x-y-4=0上,并且经过两圆x2+y2-4x-3=0和x2+y2-4y-3=0的交点,则圆C的方程为
 

查看答案和解析>>

同步练习册答案