精英家教网 > 高中数学 > 题目详情
已知直线l1:3x-4y-9=0和直线l 2:y=-
14
,抛物线y=x2上一动点P到直线l1和直线l2的距离之和的最小值是
 
分析:抛物线y=x2上的准线方程为直线l 2:y=-
1
4
,焦点为(0,
1
4
)根据抛物线的定义,可得抛物线y=x2上一动点P到直线l1和直线l2的距离之和的最小值焦点到直线l1:3x-4y-9=0的距离,由点到直线的距离公式可得结论.
解答:解:抛物线y=x2上的准线方程为直线l 2:y=-
1
4
,焦点为(0,
1
4

根据抛物线的定义,可得抛物线y=x2上一动点P到直线l1和直线l2的距离之和的最小值焦点到直线l1:3x-4y-9=0的距离.
由点到直线的距离公式可得d=
|0-1-9|
32+42
=2.
故答案为:2.
点评:本题考查抛物线的定义,考查点到直线的距离公式,考查学生分析转化问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知直线l1
3
x-y+2=0,l2:3x+
3
y-5=0,则直线l1与l2的夹角是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l1:3x+4y-5=0和l2:3x+5y-6=0相交,则它们的交点是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l1
3
x-y+2=0,求过点(1,0)且与直线l1的夹角为60°的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l1:3x+4y-5=0与直线l2:2x-3y+8=0交于点P.
(1)求点P的坐标;
(2)求过点P且与l1垂直的直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l1:3x+4y-2=0与l2:2x+y+2=0的交点为P.
(Ⅰ)求交点P的坐标;
(Ⅱ)求过点P且平行于直线l3:x-2y-1=0的直线方程;
(Ⅲ)求过点P且垂直于直线l3:x-2y-1=0直线方程.

查看答案和解析>>

同步练习册答案