精英家教网 > 高中数学 > 题目详情

如图,在底面是矩形的四棱锥P-ABCD中,PA⊥平面ABCD,PA=AB=2,BC=4.E是PD的中点,
(1)求二面角E-AC-D的余弦值;
(2)求直线CD与平面AEC所成角的正弦值.

解:以A为原点,AB所在直线为x轴,AD所在直线为y轴,AP所在直线为z轴建立空间直角坐标系,则A(0,0,0),B(2,0,0),C(2,4,0),D(0,4,0),
E(0,2,1),P(0,0,2).
=(2,0,0),=(0,4,0),=(0,0,2),=(-2,0,0),=(0,2,1),=(2,4,0).

(1)设平面AEC的法向量=(x,y,z),令z=1,则=(x,y,1).
,解得=(1,,1).
平面ABC的法向量=(0,0,2).
cos===
所以二面角E-AC-D所成平面角的余弦值是
(2)因为平面ABC的法向量是=(1,,1),而=(-2,0,0).
所以cosθ===-
直线CD与平面AEC的正弦值
分析:(1)以A为原点,AB所在直线为x轴,AD所在直线为y轴,AP所在直线为z轴建立空间直角坐标系,求出各顶点的坐标后,再求出平面EAC和平面ACD的法向量,代入向量夹角公式即可求出二面角E-AC-D的余弦值;
(2)由(1)的结论,我们进一步求出平面AEC的法向量及直线CD的方向向量,代入向量夹角公式,即可得到直线CD与平面AEC所成角的正弦值.
点评:本题考查的知识点是利用空间向量求平面间的夹角,用空间向量求直线与平面的夹角,其中建立坐标系,将二面角及线面夹角问题转化为向量夹角问题是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•惠州模拟)如图,在底面是矩形的四棱锥P-ABCD中,PA⊥平面ABCD,PA=AB=2,BC=2,E是PD的中点.
(1)求证:平面PDC⊥平面PAD;
(2)求二面角E-AC-D所成平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在底面是矩形的四棱锥P-ABCD中,PA⊥底面ABCD,PA=AB=2,BC=4.
(Ⅰ)求证:平面PDC⊥平面PAD;
(Ⅱ)在BC边上是否存在一点M,使得D点到平面PAM的距离为2,若存在,求BM的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•通州区一模)如图,在底面是矩形的四棱锥P-ABCD中,PA⊥底面ABCD,E、F分别是PC、PD的中点,求证:
(Ⅰ)EF∥平面PAB;
(Ⅱ)平面PAD⊥平面PDC.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在底面是矩形的四棱锥P-ABCD中,PA⊥平面ABCD,PA=AB=2,BC=4,E是PD的中点
(1)求证:平面PDC⊥平面PAD;
(2)求三棱锥P-AEC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在底面是矩形的四棱锥P-ABCD中,PA⊥面ABCD,PA=AB=1,BC=2.
(1)若E为PD的中点,求异面直线AE与PC所成角的余弦值;
(2)在BC上是否存在一点G,使得D到平面PAG的距离为1?若存在,求出BG;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案