精英家教网 > 高中数学 > 题目详情
在数列{an}中,an+1=can(c为非零常数)且前n项和Sn=3n+k,则k等于(  )
分析:由递推式可知给出的数列是等比数列,写出等比数列的前n项和公式后,结合给出的数列的前n项和即可得到结论.
解答:解:由an+1=can,得
an+1
an
=c
,所以数列{an}是等比数列,
因为当公比不等于1时等比数列的前n项和Sn=-
a1qn
1-q
+
a1
1-q

而Sn=3n+k,由此可知k=-1.
故选A.
点评:本题考查了等比关系的确定,考查了等比数列前n项和公式中含qn项的系数与常数之间的关系,关键是把我其中的规律,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在数列{an}中,
a
 
1
=1
an=
1
2
an-1+1
(n≥2),则数列{an}的通项公式为an=
2-21-n
2-21-n

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a 1=
1
3
,并且对任意n∈N*,n≥2都有an•an-1=an-1-an成立,令bn=
1
an
(n∈N*).
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)设数列{
an
n
}的前n项和为Tn,证明:
1
3
Tn
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a=
12
,前n项和Sn=n2an,求an+1

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a1=a,前n项和Sn构成公比为q的等比数列,________________.

(先在横线上填上一个结论,然后再解答)

查看答案和解析>>

科目:高中数学 来源:2012-2013学年广东省汕尾市陆丰市碣石中学高三(上)第四次月考数学试卷(理科)(解析版) 题型:解答题

在数列{an}中,a,并且对任意n∈N*,n≥2都有an•an-1=an-1-an成立,令bn=(n∈N*).
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)设数列{}的前n项和为Tn,证明:

查看答案和解析>>

同步练习册答案