精英家教网 > 高中数学 > 题目详情
双曲线
x2
a2
-
y2
b2
=1
右焦点为F,左顶点为A,过F作与x轴垂直的直线与双曲线交于M,N,若三角形AMN为等腰直角三角形,则双曲线的离心率是(  )
分析:把MN的方程为x=c,代入双曲线方程化简可得y=±
b2
a
,由a+c=
b2
a
可求得离心率的值.
解答:解:由题意可得MN的方程为x=c,代入双曲线
x2
a2
-
y2
b2
=1
可得y=±
b2
a

曲线
x2
a2
-
y2
b2
=1
右焦点为F,左顶点为A,过F作与x轴垂直的直线与双曲线交于M,N,
三角形AMN为等腰直角三角形,
所以a+c=
b2
a
可得a2+ac-b2=0,
∴e2-e-2=0,∴e=2,
故选C.
点评:本题考查双曲线的标准方程,以及双曲线的简单性质的应用,判断a+c=
b2
a
,是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若点O和点F(-2,0)分别是双曲线
x2
a2
-y2=1(a>0)
的中心和左焦点,点P为双曲线右支上的任意一点,则
OP
FP
的取值范围为(  )
A、[3-2
3
,+∞)
B、[3+2
3
,+∞)
C、[-
7
4
,+∞)
D、[
7
4
,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-y2=1(a>0)
的一条准线方程为x=
3
2
,则a等于
 
,该双曲线的离心率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设圆C的圆心为双曲线
x2
a2
-y2=1(a>0)
的左焦点,且与此双曲线的渐近线相切,若圆C被直线l:x-y+2=0截得的弦长等于
2
,则a等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若点O和点F(-2,0)分别是双曲线
x2
a2
-y2=1(a>0)的中心和左焦点,点P为双曲线右支上的一点,并且P点与右焦点F′的连线垂直x轴,则线段OP的长为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-y2=1
的一个焦点坐标为(-
3
,0)
,则其渐近线方程为(  )
A、y=±
2
x
B、y=±
2
2
x
C、y=±2x
D、y=±
1
2
x

查看答案和解析>>

同步练习册答案