精英家教网 > 高中数学 > 题目详情
(2013•福建)已知函数f(x)=x-alnx(a∈R)
(1)当a=2时,求曲线y=f(x)在点A(1,f(1))处的切线方程;
(2)求函数f(x)的极值.
分析:(1)把a=2代入原函数解析式中,求出函数在x=1时的导数值,直接利用直线方程的点斜式写直线方程;
(2)求出函数的导函数,由导函数可知,当a≤0时,f(x)>0,函数在定义域(0,+∝)上单调递增,函数无极值,当a>0时,求出导函数的零点,由导函数的零点对定义域分段,利用原函数的单调性得到函数的极值.
解答:解:函数f(x)的定义域为(0,+∞),f(x)=1-
a
x

(1)当a=2时,f(x)=x-2lnx,f(x)=1-
2
x
(x>0)

因而f(1)=1,f(1)=-1,
所以曲线y=f(x)在点A(1,f(1))处的切线方程为y-1=-(x-1),
即x+y-2=0
(2)由f(x)=1-
a
x
=
x-a
x
,x>0知:
①当a≤0时,f(x)>0,函数f(x)为(0,+∞)上的增函数,函数f(x)无极值;
②当a>0时,由f(x)=0,解得x=a.
又当x∈(0,a)时,f(x)<0,当x∈(a,+∞)时,f(x)>0.
从而函数f(x)在x=a处取得极小值,且极小值为f(a)=a-alna,无极大值.
综上,当a≤0时,函数f(x)无极值;
当a>0时,函数f(x)在x=a处取得极小值a-alna,无极大值.
点评:本题考查了利用导数研究曲线上某点处的切线方程,考查了利用导数研究函数的极值,考查了分类讨论得数学思想,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•福建)已知集合A={1,a},B={1,2,3},则“a=3”是“A⊆B“的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•福建)已知某一多面体内接于球构成一个简单组合体,如果该组合体的正视图、俯视图、均如图所示,且图中的四边形是边长为2的正方形,则该球的表面积是
12π
12π

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•福建)已知函数f(x)=x-1+
aex
(a∈R,e为自然对数的底数).
(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;
(Ⅱ)求函数f(x)的极值;
(Ⅲ)当a=1时,若直线l:y=kx-1与曲线y=f(x)没有公共点,求k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•福建)已知函数f(x)=sin(wx+φ)(w>0,0<φ<π)的周期为π,图象的一个对称中心为(
π
4
,0),将函数f(x)图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将得到的图象向右平移个
π
2
单位长度后得到函数g(x)的图象.
(1)求函数f(x)与g(x)的解析式
(2)是否存在x0∈(
π
6
π
4
),使得f(x0),g(x0),f(x0)g(x0)按照某种顺序成等差数列?若存在,请确定x0的个数,若不存在,说明理由;
(3)求实数a与正整数n,使得F(x)=f(x)+ag(x)在(0,nπ)内恰有2013个零点.

查看答案和解析>>

同步练习册答案