精英家教网 > 高中数学 > 题目详情
8.已知函数y=x(x-2)的定义域为[a,b],值域为[-1,3],则点(a,b)对应图中的(  )
A.点H(1,3)和点F(-1,1)B.线段EF和线段GHC.线段EH和线段FGD.线段EF和线段EH

分析 由题意和二次函数的图象可得.

解答 解:∵函数y=x(x-2)的定义域为[a,b],值域为[-1,3],
∴结合二次函数的图象可得$\left\{\begin{array}{l}{a=-1}\\{1≤b≤3}\end{array}\right.$或$\left\{\begin{array}{l}{b=3}\\{-1≤a≤1}\end{array}\right.$,
故选:D.

点评 本题考查函数的值域,数形结合是解决问题的关键,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.若角α,β的终边关于x轴对称,则α,β之间的关系是α+β=2kπ(k∈Z).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.甲乙两人下棋,若甲获胜的概率为$\frac{1}{5}$,甲乙下成和棋的概率为$\frac{2}{5}$,则乙不输棋的概率为$\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.数列{an}中,a1=$\frac{2}{3}$,an+1=$\frac{2{a}_{n}}{{a}_{n}+1}$
(1)求证:数列{$\frac{1}{{a}_{n}}-1$}是等比数列
(2)记bn=$\frac{{a}_{n}{a}_{n+1}}{{2}^{n+1}}$,数列{bn}前n项的和为Sn,求证:Sn<$\frac{1}{3}$
(3)是否存在成等差数列且互不相等的三个正整数m、s、r,使得am-1、as-1、ar-1成等比数列,若存在,求出所有满足条件的正整数m、s、r,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若h(x)=log3x的定义域为[1,9],不等式[h(x)+2]2≤h(x3)+m+2恒成立,则实数m的最小值为(  )
A.2B.8C.10D.11

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知x>0,求证:x+$\frac{1}{x}$+$\frac{1}{x+\frac{1}{x}}$≥$\frac{5}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=(x+a)(x-b),若a,b∈{-2,-1,0,1,2},则f(x)为偶函数的概率为(  )
A.$\frac{1}{5}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左焦点F(-c,0)关于直线bx+cy=0的对称点P在椭圆上,则椭圆的离心率是(  )
A.$\frac{\sqrt{2}}{4}$B.$\frac{\sqrt{3}}{4}$C.$\frac{\sqrt{3}}{3}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知x2≤1,且a-2≥0,求函数f(x)=x2+ax+3的最值.

查看答案和解析>>

同步练习册答案