精英家教网 > 高中数学 > 题目详情
3.设F1,F2是椭圆$\frac{x^2}{a^2}+\frac{y^2}{25}=1(a<5)$的两个焦点,且|F1F2|=8,弦AB过点F2,则△ABF1的周长为(  )
A.12B.20C.2$\sqrt{41}$D.4$\sqrt{41}$

分析 由题意可知:焦点在y轴上,|F1F2|=8,即a=5,c=3,由△ABF1的周长l=|AF1|+|BF1|+|AB|=|AF1|+|BF1|+|AF2|+|BF2|=4a=20,即可求得△ABF1的周长.

解答 解:由题意可知:椭圆$\frac{x^2}{a^2}+\frac{y^2}{25}=1(a<5)$,焦点在y轴上,|F1F2|=8,即a=5,c=3,
据椭圆的定义可知:|F1A|+|AF2|=2a=10,|F1B|+|BF2|=2a=10,
由△ABF1的周长l=|AF1|+|BF1|+|AB|=|AF1|+|BF1|+|AF2|+|BF2|=4a=20,
∴△ABF1的周长20,
故选B.

点评 本题考查椭圆的定义及标准方程的应用,考查焦点三角形的周长公式,考查计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.若直线y=b与函数f(x)=$\frac{1}{3}$x3-4x+4的图象有3个交点,则b的取值范围(-$\frac{4}{3}$,$\frac{28}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.抛物线x=4y2的焦点坐标是  (  )
A.($\frac{1}{16}$,0)B.(1,0)C.(0,$\frac{1}{16}$)D.(0,1 )

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知命题p:?x0∈R,lnx0≥x0-1.命题q:?θ∈R,sinθ+cosθ>-1.则下列命题中为真命题的是(  )
A.p∧(?q)B.(?p)∨qC.(?p)∧(?q)D.p∧q

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,四棱锥P-ABCD的底面ABCD是菱形,∠ADC=60°,PA=PC,PD⊥PB,AC∩BD=E,二面角P-AC-B的大小为60°.
(1)证明:AC⊥PB;
(2)求二面角E-PD-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.抛物线C:y2=2px(p>0)的准线为l,焦点为F,圆M的圆心在x轴的正半轴上,圆M与y轴相切,过原点O作倾斜角为$\frac{π}{3}$的直线m,交直线l于点A,交圆M于不同的两点O、B,且|AO|=|BO|=2,若P为抛物线C上的动点,则$\overrightarrow{PM}•\overrightarrow{PF}$的最小值为(  )
A.-2B.2C.$\frac{7}{4}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=a(x-1)2+lnx,a∈R.
(Ⅰ)当$a=-\frac{1}{4}$时,求函数y=f(x)的单调减区间;
(Ⅱ)$a=\frac{1}{2}$时,令$h(x)=f(x)-3lnx+x-\frac{1}{2}$.求h(x)在[1,e]上的最大值和最小值;
(Ⅲ)若a≤0时,求证:函数f(x)≤x-1在x∈[1,+∞)恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知函数f(x)=x3+3x对任意的m∈[-2,2],f(mx-2)+f(x)<0恒成立,则x∈(-2,$\frac{2}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知命题p:?x∈(0,+∞),3x-cosx>0,则下列叙述正确的是(  )
A.¬p:?x∈(0,+∞),3x-cosx≤0B.¬p:?x∈(0,+∞),3x-cosx<0
C.¬p:?x∈(-∞,0],3x-cosx≤0D.¬p是假命题

查看答案和解析>>

同步练习册答案