精英家教网 > 高中数学 > 题目详情

如图,设矩形ABCD(AB>AD)的周长为4,把它关于AC折起来,AB折过去后,交DC与点P.设AB=x,求△ADP的最大面积及相应的x的值.

(本小题满分12分)
解:如图,因为AB=x,所以AD=2-x.…(2分)
设PC=a,则DP=x-a.
由勾股定理,得(2-x)2+(x-a)2=a2.…(4分)
可得.…(6分)
所以△ADP的面积=.…(8分)
∵x>0,.…(10分)

当且仅当时,即当时取“=”号.
答:当时,△ADP的最大面积为.…(12分)
分析:由已知中矩形ABCD(AB>AD)的周长为4,AB=x,我们可以可得AD=2-x,进而设出PC=a,则DP=x-a,由勾股定理,我们可以得到△ADP的面积的表达式,进而由基本不等式我们易求出△ADP的最大面积及相应的x的值.
点评:本题考查的知识点是函数模型的选择与应用,基本不等式的应用,其中根据已知条件求出△ADP的面积的表达式,将问题转化为利用基本不等式求最值问题,是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,设矩形ABCD(AB>AD)的周长为24,把它关于AC折起来,AB折过去后,交DC于P,设AB=x.
(1)请用x来表示DP;
(2)请用x来表示△ADP的面积;
(3)请根据△ADP的面积表达式求此面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,设矩形ABCD(AB>AD)的周长为4,把它关于AC折起来,AB折过去后,交DC与点P.设AB=x,求△ADP的最大面积及相应的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,设矩形ABCD(AB>AD)的周长为l(l为定值),把该矩形沿AC折起来,AB折过去后,交DC于点P,设AB=x,△ADP的面积为y.
(1)求函数y=f(x)的解析式,并指出定义域;
(2)求△ADP的最大面积及相应的x值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,设矩形ABCD(AB>AD)的周长为24,把它关于AC折起来,AB折过去后,交DC于P,设AB=x,
(1)用x来表示△ADP的面积
(2)求△ADP面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•黄冈模拟)如图,设矩形ABCD(AB>AD)的周长是20,把三角形ABC沿AC折起来,AB折过去后,交DC于点F,设AB=x,则三角形ADF的面积最大时的x的值为
5
2
5
2

查看答案和解析>>

同步练习册答案