精英家教网 > 高中数学 > 题目详情
16.已知集合A={1,2,4},B={x|x2=1},那么A∪B=(  )
A.{1}B.{1,2,4}C.{-1,1,2,4}D.{2,4}

分析 通过解方程求出集合B,然后利用并集的运算法则求出A∪B即可.

解答 解:因为集合A={1,2,4},B={x|x2=1}={-1,1},
所以A∪B={-1,1,2,4}.
故选:C.

点评 本题考查集合的并集的求法,集合的基本知识,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.给出下列五种说法:
(1)函数y=ax(a>0,a≠1)与函数y=x2得到定义域相同;
(2)函数y=x2与y=3x的值域相同;
(3)函数y=$\frac{1}{2}+\frac{1}{{2}^{x}-1}$与y=$\frac{(1+{2}^{x})^{2}}{x•{2}^{x}}$均是奇函数;
(4)函数y=(x-1)2与y=2x-1在(0,+∞)上都是增函数;
(5)记函数f(x)=x-[x](注:[x]表示不超过x的最大整数,例如[3.2]=3;[-2.3]=-3),则f(x)的值域是[0,1).
其中所有正确说法的序号是(1)(3)(5).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知点P是椭圆$\frac{x^2}{9}+\frac{y^2}{4}$=1上任一点,且点P在第一象限内,若以P点的纵横坐标的倒数分别作为一个直角三角形的两直角边长,则该直角三角形斜边长的最小值为$\frac{5}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.记函数$f(x)=lg(3-x)+\sqrt{x-1}$的定义域为集合A,函数g(x)=2x+a的值域为集合B.
(1)若a=2,求A∩B和A∪B;
(2)若A∪B=B,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设a>0,f(x)=$\frac{{e}^{x}}{a}$+$\frac{a}{{e}^{x}}$(e为常数,e=2.71828…)在R上满足f(x)=f(-x).
(1)求a的值;
(2)证明:f(x)在(0,+∞)上是增函数;
(3)求函数f(x)在区间[1,2]上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若椭圆$\frac{x^2}{2}+\frac{y^2}{m^2}=1(m>0)$的离心率与等轴双曲线的离心率互为倒数,则m=1或2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数$f(x)=\frac{{{2^x}-1}}{{{2^x}+1}}$.
(1)判断函数f(x)的奇偶性;
(2)用函数单调性定义证明f(x)在(-∞,+∞)上是增函数,并求出f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知(1+2x)m的展开式中的倒数第三项的二项式系数是45.
(1)求m的值;
(2)求二项式系数最大的项;
(3)求系数最大的项.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数f(x)=x2+3x+2在区间(-5,5)上的最大值、最小值分别是(  )
A.42,12B.42,-$\frac{1}{4}$
C.12,-$\frac{1}{4}$D.无最大值,有最小值是-$\frac{1}{4}$

查看答案和解析>>

同步练习册答案