·ÖÎö £¨¢ñ£©Çó³öÅ×ÎïÏßµÄ×¼Ïߣ¬ÓÉÌâÒâ¿ÉµÃ4+$\frac{p}{2}$+1=$\frac{21}{4}$£¬½âµÃp£¬½ø¶øµÃµ½Å×ÎïÏߵķ½³ÌºÍ½¹µã×ø±ê£»
£¨¢ò£©Éè³öD£¬EµÄ×ø±ê£¬ÓÉÏòÁ¿µÄÊýÁ¿»ýµÄ×ø±ê±íʾ£¬¿ÉµÃy1y2=-4£¬ÔÙÓÉÈýµã¹²ÏßµÄÌõ¼þ£ºÐ±ÂÊÏàµÈ£¬¼ÆËã¼´¿ÉµÃÖ¤£»
£¨¢ó£©ÓÉÇÐÏß³¤ÏàµÈºÍ¶Ô³ÆÐÔ£¬¿ÉµÃPÓëOÖØºÏ£¬Éè³öÇÐÏߵķ½³Ì£¬ÔËÓõ㵽ֱÏߵľàÀ빫ʽ£¬¼ÆËã¼´¿ÉµÃµ½ÇÐÏß·½³Ì£¬´úÈëÅ×ÎïÏߵķ½³Ì£¬ÇóµÃ½»µã£¬¼´¿ÉµÃµ½ËùÇóÖ±Ïߵķ½³Ì£®
½â´ð ½â£º£¨¢ñ£©Å×ÎïÏßC£ºy2=2px£¨p£¾0£©µÄ×¼Ïߵķ½³ÌΪx=-$\frac{p}{2}$£¬
ÓÉÌâÒâ¿ÉµÃ4+$\frac{p}{2}$+1=$\frac{21}{4}$£¬½âµÃp=$\frac{1}{2}$£¬
¼´ÓÐÅ×ÎïÏߵķ½³ÌΪy2=x£¬½¹µãΪ£¨$\frac{1}{4}$£¬0£©£»
£¨¢ò£©Ö¤Ã÷£ºÉèD£¨y12£¬y1£©£¬E£¨y22£¬y2£©£¬y1y2£¼0£¬
ÓÉ$\overrightarrow{OD}$•$\overrightarrow{OE}$=12£¬¿ÉµÃy12•y22+y1y2-12=0£¬½âµÃy1y2=-4£¬
ÓÉM£¨4£¬0£©£¬¿ÉµÃÖ±ÏßMDµÄбÂÊΪk1=$\frac{{y}_{1}-0}{{{y}_{1}}^{2}-4}$£¬
Ö±ÏßMEµÄбÂÊΪk2=$\frac{{y}_{2}-0}{{{y}_{2}}^{2}-4}$£¬k1-k2=$\frac{£¨{y}_{1}-{y}_{2}£©£¨{y}_{1}{y}_{2}+4£©}{£¨{{y}_{1}}^{2}-4£©£¨{{y}_{2}}^{2}-4£©}$=0£¬
ÔòÓÐk1=k2£¬Ö±ÏßDE¾¹ýµãM£»
£¨¢ó£©ÓÉÔ²µÄ¶Ô³ÆÐÔºÍÔ²ÍâÒ»µã×÷ÇÐÏߣ¬ÇÐÏß³¤ÏàµÈ£¬
ÒÔ¼°Å×ÎïÏß¹ØÓÚxÖá¶Ô³Æ£¬ÓÖ|PA|=|PB|£¬
¿ÉµÃPÓëOÖØºÏ£¬
ÉèÇÐÏߵķ½³ÌΪy=kx£¬ÓÉÖ±ÏߺÍÔ²ÏàÇУ¬¿ÉµÃ
$\frac{|4k|}{\sqrt{1+{k}^{2}}}$=1£¬½âµÃk=¡À$\frac{\sqrt{15}}{15}$£¬
ÓÉ$\left\{\begin{array}{l}{y=\frac{\sqrt{15}}{15}x}\\{{y}^{2}=x}\end{array}\right.$£¬½âµÃ½»µãΪ£¨15£¬$\sqrt{15}$£©£¬
ÓÉ$\left\{\begin{array}{l}{y=-\frac{\sqrt{15}}{15}x}\\{{y}^{2}=x}\end{array}\right.$¿ÉµÃÁíÒ»¸ö½»µãΪ£¨15£¬-$\sqrt{15}$£©£®
ÔòËùÇóÖ±Ïߵķ½³ÌΪx=15£®
µãÆÀ ±¾Ì⿼²éÅ×ÎïÏߵķ½³ÌºÍÐÔÖÊ£¬¿¼²éÏòÁ¿µÄÊýÁ¿»ýµÄ×ø±ê±íʾºÍÖ±ÏßµÄбÂʹ«Ê½µÄÔËÓã¬Ö±ÏߺÍÔ²ÏàÇеÄÌõ¼þ£¬ÒÔ¼°Å×ÎïÏߵĶԳÆÐÔ£¬¿¼²éÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $y=\sqrt{x^2}£¬y={£¨\sqrt{x}£©^2}$ | B£® | $y=\sqrt{x-1}¡Á\sqrt{x+1}£¬y=\sqrt{{x^2}-1}$ | ||
| C£® | $y=1£¬y=\frac{x}{x}$ | D£® | $y=\left\{\begin{array}{l}x£¬x¡Ý0\\-x£¬x£¼0\end{array}\right.$y=|x| |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | a¡Íb£¬ÇÒaÓëbÏཻ | B£® | a¡Íb£¬ÇÒaÓëb²»Ïཻ | ||
| C£® | a¡Íb | D£® | aÓëb²»Ò»¶¨´¹Ö± |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | £¨-¡Þ£¬-6£© | B£® | [-6£¬0] | C£® | £¨-¡Þ£¬-1] | D£® | [-1£¬0] |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 4 | B£® | $\sqrt{2}$ | C£® | $\sqrt{3}$ | D£® | 2 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com