5£®ÒÑÖªÅ×ÎïÏßC£ºy2=2px£¨p£¾0£©ºÍÔ²M£º£¨x-4£©2+y2=1£¬ÇÒÔ²MÉϵĵ㵽Å×ÎïÏßµÄ×¼ÏߵľàÀëµÄ×î´óֵΪ$\frac{21}{4}$£®
£¨¢ñ£©ÇóÅ×ÎïÏߵķ½³ÌºÍ½¹µã×ø±ê£»
£¨¢ò£©ÉèD£¬EÊÇÅ×ÎïÏßCÉÏÒìÓÚ×ø±êÔ­µãO£¬ÇÒλÓÚxÖáÁ½²àµÄÁ½µã£¬Èô$\overrightarrow{OD}$•$\overrightarrow{OE}$=12£¬ÇóÖ¤£ºÖ±ÏßDE¾­¹ýÔ²ÐÄM£»
£¨¢ó£©¹ýÅ×ÎïÏßÉϵÄÒ»µãP×÷Ô²MµÄÁ½ÌõÇÐÏߣ¬ËüÃÇ·Ö±ð½»Å×ÎïÏßÓÚÁíÍâÁ½µãA£¬B£¬Èô|PA|=|PB|£¬ÇóÖ±ÏßABµÄ·½³Ì£®

·ÖÎö £¨¢ñ£©Çó³öÅ×ÎïÏßµÄ×¼Ïߣ¬ÓÉÌâÒâ¿ÉµÃ4+$\frac{p}{2}$+1=$\frac{21}{4}$£¬½âµÃp£¬½ø¶øµÃµ½Å×ÎïÏߵķ½³ÌºÍ½¹µã×ø±ê£»
£¨¢ò£©Éè³öD£¬EµÄ×ø±ê£¬ÓÉÏòÁ¿µÄÊýÁ¿»ýµÄ×ø±ê±íʾ£¬¿ÉµÃy1y2=-4£¬ÔÙÓÉÈýµã¹²ÏßµÄÌõ¼þ£ºÐ±ÂÊÏàµÈ£¬¼ÆËã¼´¿ÉµÃÖ¤£»
£¨¢ó£©ÓÉÇÐÏß³¤ÏàµÈºÍ¶Ô³ÆÐÔ£¬¿ÉµÃPÓëOÖØºÏ£¬Éè³öÇÐÏߵķ½³Ì£¬ÔËÓõ㵽ֱÏߵľàÀ빫ʽ£¬¼ÆËã¼´¿ÉµÃµ½ÇÐÏß·½³Ì£¬´úÈëÅ×ÎïÏߵķ½³Ì£¬ÇóµÃ½»µã£¬¼´¿ÉµÃµ½ËùÇóÖ±Ïߵķ½³Ì£®

½â´ð ½â£º£¨¢ñ£©Å×ÎïÏßC£ºy2=2px£¨p£¾0£©µÄ×¼Ïߵķ½³ÌΪx=-$\frac{p}{2}$£¬
ÓÉÌâÒâ¿ÉµÃ4+$\frac{p}{2}$+1=$\frac{21}{4}$£¬½âµÃp=$\frac{1}{2}$£¬
¼´ÓÐÅ×ÎïÏߵķ½³ÌΪy2=x£¬½¹µãΪ£¨$\frac{1}{4}$£¬0£©£»
£¨¢ò£©Ö¤Ã÷£ºÉèD£¨y12£¬y1£©£¬E£¨y22£¬y2£©£¬y1y2£¼0£¬
ÓÉ$\overrightarrow{OD}$•$\overrightarrow{OE}$=12£¬¿ÉµÃy12•y22+y1y2-12=0£¬½âµÃy1y2=-4£¬
ÓÉM£¨4£¬0£©£¬¿ÉµÃÖ±ÏßMDµÄбÂÊΪk1=$\frac{{y}_{1}-0}{{{y}_{1}}^{2}-4}$£¬
Ö±ÏßMEµÄбÂÊΪk2=$\frac{{y}_{2}-0}{{{y}_{2}}^{2}-4}$£¬k1-k2=$\frac{£¨{y}_{1}-{y}_{2}£©£¨{y}_{1}{y}_{2}+4£©}{£¨{{y}_{1}}^{2}-4£©£¨{{y}_{2}}^{2}-4£©}$=0£¬
ÔòÓÐk1=k2£¬Ö±ÏßDE¾­¹ýµãM£»
£¨¢ó£©ÓÉÔ²µÄ¶Ô³ÆÐÔºÍÔ²ÍâÒ»µã×÷ÇÐÏߣ¬ÇÐÏß³¤ÏàµÈ£¬
ÒÔ¼°Å×ÎïÏß¹ØÓÚxÖá¶Ô³Æ£¬ÓÖ|PA|=|PB|£¬
¿ÉµÃPÓëOÖØºÏ£¬
ÉèÇÐÏߵķ½³ÌΪy=kx£¬ÓÉÖ±ÏߺÍÔ²ÏàÇУ¬¿ÉµÃ
$\frac{|4k|}{\sqrt{1+{k}^{2}}}$=1£¬½âµÃk=¡À$\frac{\sqrt{15}}{15}$£¬
ÓÉ$\left\{\begin{array}{l}{y=\frac{\sqrt{15}}{15}x}\\{{y}^{2}=x}\end{array}\right.$£¬½âµÃ½»µãΪ£¨15£¬$\sqrt{15}$£©£¬
ÓÉ$\left\{\begin{array}{l}{y=-\frac{\sqrt{15}}{15}x}\\{{y}^{2}=x}\end{array}\right.$¿ÉµÃÁíÒ»¸ö½»µãΪ£¨15£¬-$\sqrt{15}$£©£®
ÔòËùÇóÖ±Ïߵķ½³ÌΪx=15£®

µãÆÀ ±¾Ì⿼²éÅ×ÎïÏߵķ½³ÌºÍÐÔÖÊ£¬¿¼²éÏòÁ¿µÄÊýÁ¿»ýµÄ×ø±ê±íʾºÍÖ±ÏßµÄбÂʹ«Ê½µÄÔËÓã¬Ö±ÏߺÍÔ²ÏàÇеÄÌõ¼þ£¬ÒÔ¼°Å×ÎïÏߵĶԳÆÐÔ£¬¿¼²éÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®ÏÂÁи÷×麯ÊýÖУ¬±íʾͬһº¯ÊýµÄÊÇ£¨¡¡¡¡£©
A£®$y=\sqrt{x^2}£¬y={£¨\sqrt{x}£©^2}$B£®$y=\sqrt{x-1}¡Á\sqrt{x+1}£¬y=\sqrt{{x^2}-1}$
C£®$y=1£¬y=\frac{x}{x}$D£®$y=\left\{\begin{array}{l}x£¬x¡Ý0\\-x£¬x£¼0\end{array}\right.$y=|x|

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®Ö±Ïßa¡ÍÆ½Ãæ¦Á£¬Ö±Ïßb¡Î¦Á£¬ÔòÖ±ÏßaÓëÖ±ÏßbµÄ¹ØÏµÊÇ£¨¡¡¡¡£©
A£®a¡Íb£¬ÇÒaÓëbÏཻB£®a¡Íb£¬ÇÒaÓëb²»Ïཻ
C£®a¡ÍbD£®aÓëb²»Ò»¶¨´¹Ö±

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®ÒÑÖªº¯Êýf£¨x£©=$\left\{\begin{array}{l}{{x}^{2}-4x£¬x¡Ü0}\\{sin¦Ðx£¬x£¾0}\end{array}\right.$£¬£®Èôf£¨x£©-ax¡Ý-1£¬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®£¨-¡Þ£¬-6£©B£®[-6£¬0]C£®£¨-¡Þ£¬-1]D£®[-1£¬0]

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®¹ýÅ×ÎïÏßx2=4yÉÏÒ»µãM£¨x0£¬y0£©£¨x0£¾0£©×÷Å×ÎïÏßµÄÇÐÏßÓëÅ×ÎïÏßµÄ×¼Ïß½»ÓÚµãN£¨x1£¬y1£©£¬Ôòx0-x1µÄ×îСֵΪ2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®ÒÑ֪ʵÊýx£¬yÂú×㣺$\left\{\begin{array}{l}{x+2y-5¡Ü0}\\{2x+y-4¡Ü0}\\{x¡Ý0£¬y¡Ý0}\end{array}\right.$£¬ÔòÓɲ»µÈʽ×éÈ·¶¨µÄ¿ÉÐÐÓòµÄÃæ»ýΪ$\frac{13}{4}$£»¼Çmax{a£¬b}={$\left\{\begin{array}{l}{a£¬a¡Ýb}\\{b£¬a£¼b}\end{array}\right.$£¬Ôòz=max{3x+2y£¬x+3y}µÄ×î´óֵΪ$\frac{15}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®ÒÑÖªÊýÁÐ{an}µÄͨÏîan=$\frac{2}{4{n}^{2}-4n-3}$£¬ÔòÆäǰnÏîºÍΪ-$\frac{2n}{4{n}^{2}-1}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®ÔÚ¡÷ABCÖÐÄÚ½ÇA£¬B£¬CËù¶ÔµÄ±ß·Ö±ðΪa£¬b£¬c£¬tanA=$\frac{\sqrt{2}bc}{{b}^{2}+{c}^{2}-{a}^{2}}$£¬a=$\sqrt{2}$£¬SΪ¡÷ABCµÄÃæ»ý£¬ÔòS+$\sqrt{2}$cosBcosCµÄ×î´óֵΪ£¨¡¡¡¡£©
A£®4B£®$\sqrt{2}$C£®$\sqrt{3}$D£®2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®ÒÑÖªP£¬A£¬B£¬C°ë¾¶Îª$\sqrt{14}$µÄÇò±íÃæÉÏ£¬ÇÒPA£¬PB£¬PCÁ½Á½´¹Ö±£¬ÈôPA+PB+PC=12£¬ÔòÈýÀâ×¶P-ABCµÄ²àÃæ»ýΪ
22£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸