精英家教网 > 高中数学 > 题目详情
设椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的一个焦点为F,点P在y轴上,直线PF交椭圆于M、N,
PM
=λ1
MF
PN
=λ2
NF
,则实数λ12=(  )
分析:设直线l的斜率为k,则直线l的方程是y=k(x-c).将直线l的方程代入到椭圆C的方程中,消去y并整理得(b2+a2k2)x2-2a2ck2x+a2c2k2-a2b2=0.然后利用向量关系及根与系数的关系,可求得λ12的值.
解答:解:设M,N,P点的坐标分别为M(x1,y1),N(x2,y2),P(0,y0),
又不妨设F点的坐标为(c,0).
显然直线l存在斜率,设直线l的斜率为k,
则直线l的方程是y=k(x-c).
将直线l的方程代入到椭圆C的方程中,消去y并整理得(b2+a2k2)x2-2a2ck2x+a2c2k2-a2b2=0.
x1+x2=
2a2ck2
b2+a2k2
x1x2=
-a2b2
b2+a2k2

又∵
PM
=λ1
MF
PN
=λ2
NF

将各点坐标代入得 λ1=
x1
2-x1
λ2=
x2
2-x2

λ1+λ2=
x1
2-x 1
+
x2
2-x2
=
2(x1+x2)-2x1x2
4-2(x1+x2)+x1x2
=-
2a2
b2

故选C.
点评:本题以向量为载体,考查直线与椭圆的位置关系,是椭圆性质的综合应用题,解题时要注意公式的合理选取和灵活运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦点分别为F1,F2,A是椭圆上的一点,C,原点O到直线AF1的距离为
1
3
|OF1|

(Ⅰ)证明a=
2
b

(Ⅱ)求t∈(0,b)使得下述命题成立:设圆x2+y2=t2上任意点M(x0,y0)处的切线交椭圆于Q1,Q2两点,则OQ1⊥OQ2

查看答案和解析>>

科目:高中数学 来源: 题型:

设椭圆
x2
a2
+
y2
b2
=1(a>b>0)
上的动点Q,过动点Q作椭圆的切线l,过右焦点作l的垂线,垂足为P,则点P的轨迹方程为(  )
A、x2+y2=a2
B、x2+y2=b2
C、x2+y2=c2
D、x2+y2=e2

查看答案和解析>>

科目:高中数学 来源: 题型:

设P是椭圆
x2a2
+y2=1   (a>1)
短轴的一个端点,Q为椭圆上一个动点,求|PQ|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•即墨市模拟)设椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
1
2
,右焦点为F(c,0),方程ax2+bx-c=0的两个实根分别为x1和x2,则点P(x1,x2)(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

-1<a<-
1
2
,则椭圆
x2
a2
+
y2
(a+1)2
=1
的离心率的取值范围是(  )

查看答案和解析>>

同步练习册答案