精英家教网 > 高中数学 > 题目详情

(本小题共14分)如图,四棱锥中,底面为平行四边形,⊥底面.

(1)证明:平面平面

(2)若二面角,求与平面所成角的正弦值。

 

【答案】

(1)见解析;(2)

【解析】本试题主要是考查了面面垂直的证明,以及二面角的求解的综合运用。

(1)利用线面垂直的的判定定理和面面垂直的判定定理得到郑敏。

(2)合理的建立空间直角坐标系,可以表示出平面的法向量和法向量的夹角,然后借助于向量的数量积公式的得到二面角的平面角的求解。

解:(1)∵       ∴

       又∵⊥底面       ∴

      又∵           ∴平面    而平面

   ∴平面平面                …………6分

(2)由(1)所证,平面  

所以∠即为二面角P-BC-D的平面角,即∠   ………………7分

,所以

分别以轴、轴、轴建立空间直角坐标系。……………8分

 则

所以,……………10分

设平面的法向量为,则   

  可解得            ……………12分

与平面所成角的正弦值为  ………14分

(另外做出与平面所成角或利用等体积求出也可)

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(07年北京卷理)(本小题共14分)

如图,在中,,斜边可以通过以直线为轴旋转得到,且二面角是直二面角.动点的斜边上.

(I)求证:平面平面

(II)当的中点时,求异面直线所成角的大小;

(III)求与平面所成角的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(07年北京卷文)(本小题共14分)

如图,在中,,斜边可以通过以直线为轴旋转得到,且二面角的直二面角.的中点.

(I)求证:平面平面

(II)求异面直线所成角的大小.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年北京市丰台区高三上学期期末考试理科数学 题型:解答题

(本小题共14分)如图,在三棱柱ABC-A1B1C1中,CC1⊥底面ABC,AC=BC=2,,CC1=4,M是棱CC1上一点.

(Ⅰ)求证:BC⊥AM;

(Ⅱ)若M,N分别是CC1,AB的中点,求证:CN //平面AB1M;

(Ⅲ)若,求二面角A-MB1-C的大小.

 

 

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年北京市丰台区高三上学期期末考试文科数学 题型:解答题

(本小题共14分)如图,在三棱柱ABC-A1B1C1中,CC1⊥底面ABC,AC=BC,M,N分别是CC1,AB的中点.

(Ⅰ)求证:CN⊥AB1;

(Ⅱ)求证:CN //平面AB1M.

 

 

 

查看答案和解析>>

同步练习册答案