精英家教网 > 高中数学 > 题目详情
在空间四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点.若AC=BD=a,若四边形EFGH的面积为
3
8
a2
,则异面直线AC与BD所成的角为(  )
A、30°B、60°
C、120°D、60°或120°
分析:根据三角形中位线定理,结合题意证出四边形EFGH为菱形,∠FEH(或其补角)就是异面直线AC与BD所成的角.设AC与BD所成的角为α,利用平行四边形的面积公式,建立关于α的等式,解之即可得出AC与BD所成的角.
解答:解:连结EH,精英家教网
∵EH是△ABD的中位线,
∴EH∥BD且EH=BD.
同理可得FG∥BD,EF∥AC,且FG=BD,EF=AC.
∴EH∥FG,且EH=FG,可得四边形EFGH为平行四边形.
∵AC=BD=a,
∴EF=EH=
1
2
a
,四边形EFGH为菱形,
设AC与BD所成的角为α,可得∠FEH=α或π-α,
可得四边形EFGH的面积S=
1
2
a•
1
2
asinα=
3
8
a2

解得sinα=
3
2

结合异面直线所成角为锐角或直角,可得α=60°,
即异面直线AC与BD所成的角为60°.
故选:B
点评:本题在特殊的空间四边形中求异面直线所成角的大小,着重考查了平行四边形的面积公式、三角形中位线定理、异面直线所成角的定义及求法等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

8、在空间四边形ABCD的各边AB,BC,CD,DA上依次取点E,F,G,H,若EH、FG所在直线相交于点P,则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在空间四边形ABCD的边AB,BC,CD,DA上分别取E,F,G,H使
AE
EB
=
AH
HD
=1,
CF
FB
=
CG
GD
=
1
2
,则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在空间四边形ABCD中,连接AC、BD,若△BCD是正三角形,且E为其中心,则
AB
+
1
2
BC
-
3
2
DE
-
AD
化简后的结果为(  )
A、
AB
B、2
BD
C、
0
D、2
DE

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•顺义区一模)如图,已知在空间四边形ABCD中,AB=AC=DB=DC,E为BC的中点.
(Ⅰ)求证:平面ADE⊥平面ABC;
(Ⅱ)若AB=5,BC=6,AD=4,求几何体ABCD的体积;
(Ⅲ)在(Ⅱ)的条件下,若G为△ABD的重心,试问在线段BC上是否存在点F,使GF∥平面ADE?若存在,请指出点F在BC上的位置,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案