精英家教网 > 高中数学 > 题目详情
(文)斜率为1的直线过抛物线y2=4x的焦点,且与抛物线交于两点A、B.
(1)求|AB|的值;
(2)将直线AB按向量平移得直线m,N是m上的动点,求的最小值.
(3)设C(2,0),D为抛物线y2=4x上一动点,证明:存在一条定直线l:x=a,使得l被以CD为直径的圆截得的弦长为定值,并求出直线l的方程.
【答案】分析:(1)根据抛物线方程求出焦点坐标,利用直线方程的点斜式写出直线方程,代入抛物线方程,利用韦达定理,求出x1+x2,x1x2,再代入弦长公式,就可求出|AB|的值.
(2)利用向量平移公式求出直线AB平移后的方程,设出动点N的坐标,代入,利用(1)中所求x1+x2,x1x2,化简,再用二次函数求最值的方法求出最小值.
(3)先假设存在一条定直线l:x=a,使得l被以CD为直径的圆截得的弦长为定值,设出直线l与以CD为直径的圆的交点为P,Q,则动圆圆心到P,Q的距离都等于CD距离的一半,再求出动圆圆心到直线l的距离,利用圆中半径,弦心距,半弦满足勾股定理,计算出半弦,看是否为常数,若是,则假设正确,若不是,则假设不正确.再根据求出的a值,写出直线l的方程即可.
解答:解:(1)设A(x1,y1),B(x2,y2),直线AB:y=x-1,代入y2=4x中
可得:x2-6x+1=0
则x1+x2=6,由定义可得:|AB|=x1+x2+p=8.
(2)由(1)可设N(x,x+1),


由x1+x2=6,x1x2=1,y1y2=-4,y1+y2=4

当x=2时,的最小值为-14.                              
(3)设CD的中点为O',l与以CD为直径的圆相交于点P、Q,
设PQ的中点为H,则O'H⊥PQ,O'点的坐标为


∴|PH|2=|O'P|2-|O'H|2=
=(a-1)x1-a2+2a,∴|PQ|2=(2|PH|)2=4[(a-1)x1-a2+2a].                         
令a-1=0,得a=1,此时|PQ|=2为定值,
故满足条件的直线l存在,其方程为x=1,即抛物线的通径所在的直线.
点评:本题主要考查了直线与抛物线相交时弦长的求法,直线与圆相交时弦长的求法,其中注意韦达定理的应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2009•闵行区二模)(文)斜率为1的直线过抛物线y2=4x的焦点,且与抛物线交于两点A、B.
(1)求|AB|的值;
(2)将直线AB按向量
a
=(-2,0)
平移得直线m,N是m上的动点,求
NA
NB
的最小值.
(3)设C(2,0),D为抛物线y2=4x上一动点,证明:存在一条定直线l:x=a,使得l被以CD为直径的圆截得的弦长为定值,并求出直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

椭圆G:=1(a>b>0)的两个焦点F1(-c,0)、F2(c,0),M是椭圆上一点,且满足F1M·F2M=0.

(1)求离心率e的取值范围.

(2)当离心率e取得最小值时,点N(0,3)到椭圆上的点的最远距离为.

①求此时椭圆G的方程;

②(理)设斜率为k(k≠0)的直线l与椭圆G相交于不同的两点A、B,Q为AB的中点,问A、B两点能否关于过点P(0,)、Q的直线对称?若能,求出k的取值范围;若不能,请说明理由.

(文)设斜率为1的直线与椭圆G相交于不同的两点A、B,Q为AB的中点,点P的坐标为(0),若直线PQ垂直平分弦AB,求AB所在的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

椭圆G:=1(a>b>0)的两个焦点F1(-c,0)、F2(c,0),M是椭圆上一点,且满足=0.

(1)求离心率e的取值范围.

(2)当离心率e取得最小值时,点N (0,3)到椭圆上的点的最远距离为.

①求此时椭圆G的方程;

②(理)设斜率为k(k≠0)的直线l与椭圆G相交于不同的两点A、B,Q为AB的中点,问A、B两点能否关于过点P(0,)、Q的直线对称?若能,求出k的取值范围;若不能,请说明理由.

(文)设斜率为1的直线与椭圆G相交于不同的两点A、B,Q为AB的中点,点P的坐标为(0,),若直线PQ垂直平分弦AB,求AB所在的直线方程.

查看答案和解析>>

科目:高中数学 来源:2009年上海市闵行区高考数学一模试卷(文理合卷)(解析版) 题型:解答题

(文)斜率为1的直线过抛物线y2=4x的焦点,且与抛物线交于两点A、B.
(1)求|AB|的值;
(2)将直线AB按向量平移得直线m,N是m上的动点,求的最小值.
(3)设C(2,0),D为抛物线y2=4x上一动点,证明:存在一条定直线l:x=a,使得l被以CD为直径的圆截得的弦长为定值,并求出直线l的方程.

查看答案和解析>>

同步练习册答案