精英家教网 > 高中数学 > 题目详情
在(1+x+)(1﹣x)10的展开式中,含项的系数是(   )(用具体数字作答).
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=ax2+(b-8)x-a-ab.当x∈(-3,2)时,f(x)>0,当x∈(-∞,-3)∪(2,+∞)时,f(x)<0.
(1)求f(x)的解析式;
(2)若函数g(x)=
a3
x2+2tanθ•x+b
在区间[1,+∞)上单调,求θ的取值范围;
(3)不等式(t-2)f(x)≥t2+(m-2)t-2m+2对x∈[-1,1]及t∈[-1,1]时恒成立,求实数m的取范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若直角坐标平面内两点P、Q满足条件:①P、Q都在函数y=f(x)的图象上;②P、Q关于原点对称,则点对(P,Q)称为是函数y=f(x)的一个“友好点对”(点对(P,Q)与(Q,P)看作同一个“友好点对”).已知函数f(x)=
2x2+4x+1,-2<x<0
log
3
4
(-x+2),0<x<2
,则f(x)的“友好点对”有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
lnx
x
,g(x)=-
x2
2
+2ex-tlnx-
1
x
,t为实常数,
(1)比较
1
e
与ln
2
大小.
(2)求f(x)在区间[1,a](a>1的常数)上最大值.
(3)当x∈[1,2]时,不等式g(x)≤t[λ-xf(x)]对于λ∈[1,+∞)恒成立,求t取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设实数x,y满足x2+y2≤1,则点(x,y)不在区域
-1≤x+y≤1
-1≤x-y≤1
内的概率是(  )

查看答案和解析>>

科目:高中数学 来源:2008年高考预测卷数学科(一)新课标 题型:044

已知函数y=f(x)满足:

(1)分别写出x∈[0,1)时y=f(x)的解析式f1(x)和x∈[1,2)时y=f(x)的解析式f2(x);并猜想x∈[n,n+1),n≥-1,n∈Z时y=f(x)的解析式fn+1(x)(用x和n表示)(不必证明)

(2)当(n≥-1,n∈Z)时,y=fn+1(x)x∈[n,n+1),n≥-1,n∈Z的图象上有点列An+1(x,f(x))和点列Bn+1(n+1,f(n+1)),线段An+1Bn+2与线段Bn+1+An+2的交点Cn+1,求点Cn+1的坐标(an+1(x),bn+1(x));

(3)在前面(1)(2)的基础上,请你提出一个点列Cn+1(an+1(x),bn+1(x))的问题,并进行研究,并写下你研究的过程

查看答案和解析>>

同步练习册答案