精英家教网 > 高中数学 > 题目详情

设圆满足(1)y轴截圆所得弦长为2.(2)被x轴分成两段弧,其弧长之比为3∶1,在满足(1)、(2)的所有圆中,求圆心到直线l:x-2y=0的距离最小的圆的方程.

设圆的圆心为P(a,b),半径为r,则Px轴,y轴的距离分别为|b|、|a|,由题设知圆Px轴所得劣弧所对圆心角为90°,故圆Px轴所得弦长为r=2b.   

r2=2b2             ①

又由y轴截圆得弦长为2,   ∴r2=a2+1          ②

由①、②知2b2a2=1.又圆心到l:x-2y=0的距离d=,

∴5d2=(a-2b)2=a2+4b2-4aba2+4b2-2(a2+b2)=2b2a2=1.当且仅当a=b时“=”号成立,

∴当a=b时,d最小为,由

由①得r=.

∴(x-1)2+(y-1)2=2或(x+1)2+(y+1)2=2为所求.


解析:

同答案

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设圆满足:①截y轴所得弦长为2;②被x轴分成两段圆弧,其弧长的比为3:1,在满足条件①、②的所有圆中,求圆心到直线l:x-2y=0的距离最小的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

设圆满足(1)y轴截圆所得弦长为2.(2)被x轴分成两段弧,其弧长之比为3∶1,在满足(1)、(2)的所有圆中,求圆心到直线l:x-2y=0的距离最小的圆的方程.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年广东省肇庆市高三数学复习必修2模块测试试卷D卷 题型:解答题

(14分)设圆满足:①截y轴所得弦长为2;②被x轴分成两段圆弧,其弧长的比为3∶1,在满足条件①、②的所有圆中,求圆心到直线l:x-2y=0的距离最小的圆的方程。

 

查看答案和解析>>

科目:高中数学 来源: 题型:

设圆满足:(1)y轴截圆所得弦长为2,(2)被x轴分成两段弧,其弧长之比为3∶1,在满足(1)、(2)的所有圆中,求圆心到直线l:x-2y=0的距离最小的圆的方程.

查看答案和解析>>

同步练习册答案