精英家教网 > 高中数学 > 题目详情
13.已知函数f(x)=ax+x2-xlna(a>0,a≠1)
(1)求函数f(x)在点(0,f(0))处的切线方程;
(2)求函数f(x)单调增区间.

分析 (1)求出函数的导数,求出导函数值,得到切线的斜率,切点坐标,然后求解切线方程.
(2)求出f′(x)>0的解集,即可得到函数f(x)的单调增区间.

解答 解:(1)因为函数f(x)=ax+x2-xlna(a>0,a≠1),
所以f′(x)=axlna+2x-lna,f′(x)=0,
又因为f(0)=1,所以函数f(x)在点(0,f(0))处的切线方程为y=1.
(2)由(1),f′(x)=axlna+2x-lna=2x+(ax-1)lna.
因为当a>0,a≠1时,总有f′(x)在R上是增函数,
又f′(x)=0,所以不等式f′(x)>0的解集为:(0,+∞),
故函数f(x)的单调增区间为:(0,+∞).

点评 本题考查函数的导数的应用,函数的单调性以及切线方程的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.设f(x)是定义在R上周期为2的函数,且对任意的实数x,恒有f(x)-f(-x)=0,当x∈[-1,0]时,f(x)=x2,若函数g(x)=f(x)-logax(a>0且a≠1)在x∈(0,+∞)上有且仅有三个零点,则a的取值范围为(3,5).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知数列{an}的前n项和Sn满足2Sn=3an-1,其中n∈N*
(1)求数列{an}的通项公式;
(2)设${a_n}{b_n}=\frac{3^n}{{{n^2}+n}}$,数列{bn}的前n项和为Tn,若${T_n}<{c^2}-2c$对n∈N*恒成立,求实数c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.阅读如图所示的程序框图,若输入的k=10,那么输出的S值为(  )
A.1024B.2036C.1023D.511

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知a≤4x3+4x2+1对任意x∈[-2,1]都成立,则实数a的取值范围是(  )
A.(-∞,-15]B.(-∞,1]C.(-∞,15)D.(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知AB为半圆O的直径,AB=4,C为半圆上一点,过点C作半圆的切线CD,过A点作AD⊥CD于D,交半圆于点E,DE=1
(1)证明:AC平分∠BAD;
(2)求BC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.求值:sin1°sin3°sin5°…sin87°sin89°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=x2-1.
(1)对于任意的1≤x≤2,不等式4m2|f(x)|+4f(m)≤|f(x-1)|恒成立,求实数m的取值范围;
(2)若对任意实数x1∈[1,2].存在实数x2∈[1,2],使得f(x1)=|2f(x2)-ax2|成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知8sinα+10cosβ=5,8cosα+10sinβ=5$\sqrt{3}$.求证:sin(α+β)=-sin($\frac{π}{3}$+α)

查看答案和解析>>

同步练习册答案