精英家教网 > 高中数学 > 题目详情

△ABC中,∠A=数学公式,边BC=数学公式数学公式数学公式=3,且边AB<AC,则边AB的长为


  1. A.
    2
  2. B.
    3
  3. C.
    4
  4. D.
    6
A
分析:由A的度数求出cosA的值,利用平面向量的数量积运算法则化简=3,将cosA的值代入求出cb的值,用c表示出b,利用余弦定理列出关系式,将表示出的b,a及cosA的值代入,得到关于c的方程,求出方程的解得到c的值,根据AB小于AC,得到c小于b,可得出满足题意的c的值,即为AB的长.
解答:∵=3,cosA=cos=
∴cbcosA=3,即cb=6,
又BC=a=,b=
∴由余弦定理a2=b2+c2-2bccosA得:7=(2+c2-6,
整理得:c4-13c2+36=0,即(c2-4)(c2-9)=0,又c>0,
∴c=2,b=3或c=3,b=2,
∵AB<AC,即c<b,
则AB=c=2.
故选A
点评:此题属于解三角形的题型,涉及的知识有:平面向量的数量积运算法则,余弦定理,以及特殊角的三角函数值,熟练掌握法则及定理是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

以下命题:
①若|
a
b
|=|
a
|•|
b
|
,则
a
b

a
=(-1,1)
b
=(3,4)
方向上的投影为
1
5

③若△ABC中,a=5,b=8,c=7,则
BC
CA
=20

④若
a
b
<0
,则向量
a
b
的夹角为钝角.
则其中真命题的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC中,a=2,b=1,C=60°,则边长c=
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a、b、c分别为内角A、B、C的对边,且2asinA=(2b+c)sinB+(2c+b)sinC.
(1)求A的大小;
(2)若△ABC的面积为
3
,a=2
3
,求b、c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,A(x,y),B(-2,0),C(2,0),给出△ABC满足的条件,就能得到动点A的轨迹方程,下表给出了一些条件及方程:
条件 方程
①△ABC周长为10;
②△ABC面积为10;
③△ABC中,∠A=90°
E1:y2=25;
E2:x2+y2=4(y≠0);
E3
x2
9
+
y2
5
=1(y≠0)
则满足条件①、②、③的轨迹方程分别用代号表示为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

以下命题:
①若|
a
b
|=|
a
|•|
b
|,则
a
b

a
=(-1,1)在
b
=(3,4)方向上的投影为
1
5

③若△ABC中,a=5,b=8,c=7,则
BC
CA
=20;
④若非零向量
a
b
满足|
a
+
b
|=|
b
|,则|2
b
|>|
a
+2
b
|.
⑤已知△ABC中,
PN
=
1
3
PA
+
PB
+
PC
)则向量λ(
AB
+
AC
)(λ≠0)所在直线必过N点.其中所有真命题的序号是
①②④
①②④

查看答案和解析>>

同步练习册答案