精英家教网 > 高中数学 > 题目详情
1.三角形ABC中,sinA=$\frac{12}{13}$,cosB=$\frac{4}{5}$,则cosC=$\frac{56}{65}$或$\frac{16}{65}$.

分析 由条件求得cosA、cosB的值,再根据cosC=-cos(A+B),利用两角和差的余弦公式计算求得结果.

解答 解:三角形ABC中,sinA=$\frac{12}{13}$,cosB=$\frac{4}{5}$,∴sinB=$\frac{3}{5}$,cosB=$\sqrt{{1-sin}^{2}B}$=$\frac{4}{5}$,∴a>b,
当A为钝角时,cosA=-$\sqrt{{1-sin}^{2}A}$=-$\frac{5}{13}$,
∴cosC=-cos(A+B)=-[cosAcosB-sinAsinB]=-[-$\frac{5}{13}$•$\frac{4}{5}$-$\frac{12}{13}$•$\frac{3}{5}$]=$\frac{56}{65}$.
当A为锐角,cosA=$\sqrt{{1-sin}^{2}A}$=$\frac{5}{13}$,
 cosC=-cos(A+B)=-[cosAcosB-sinAsinB]=-[$\frac{5}{13}$•$\frac{4}{5}$-$\frac{12}{13}$•$\frac{3}{5}$]=$\frac{16}{65}$,
故答案为:$\frac{56}{65}$ 或$\frac{16}{65}$.

点评 本题主要考查同角三角函数的基本关系,诱导公式、两角和差的余弦公式的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.化简:$\sqrt{\frac{2-2sinα}{1+cosα}}$-tan$\frac{α}{2}$,其中$\frac{π}{2}$<α<π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.比较logsin1cos1,logsin1tan1,logcos1sin1,logcos1tan1的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.与平面向量$\overrightarrow{a}$=(-$\frac{1}{3}$,-$\frac{2}{3}$)垂直的单位向量的坐标为(  )
A.($\frac{2\sqrt{5}}{5}$,-$\frac{\sqrt{5}}{5}$)B.(-$\frac{2\sqrt{5}}{5}$,$\frac{\sqrt{5}}{5}$)
C.($\frac{\sqrt{5}}{5}$,-$\frac{2\sqrt{5}}{5}$)或(-$\frac{\sqrt{5}}{5}$,$\frac{2\sqrt{5}}{5}$)D.($\frac{2\sqrt{5}}{5}$,-$\frac{\sqrt{5}}{5}$)或(-$\frac{2\sqrt{5}}{5}$,$\frac{\sqrt{5}}{5}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=$\frac{mx-1}{x}$.
(1)讨论函数的奇偶性;
(2)求证函数f(x)时(0,+∞)增函数;
(3)若函数f(x)在[a,b]上的值域是[2a,2b](0<a<b),求实数m的取值范围;
(4)若任意x∈(1,2],不等式f(x)≥2x恒成立,求实数m的取值范围;
(5)若存在x∈(1,2],使不等式f(x)≥2x成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在等比数列{an}(n∈N*)中,a1>1,公比q>0,设bn=log2an.且b1+b2+b3=6,b1b3b5=0.
(1)求{an}的通项an
(2)若cn=$\frac{1}{n({b}_{n}-6)}$,求{cn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.底面为正方形的直棱柱,它的底面对角线为$\sqrt{2}$,体对角线为$\sqrt{6}$,则这个棱柱的侧面积是(  )
A.2B.4C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知x,y满足约束条件$\left\{\begin{array}{l}{2y-x-1≥0}\\{2y-3x+1≤0}\\{2y+x-11≤0}\end{array}\right.$,z=ax+by(a>b>0)最大值为12,则$\frac{5}{a}$+$\frac{2}{b}$的最小值为(  )
A.$\frac{31+10\sqrt{6}}{12}$B.$\frac{23+4\sqrt{30}}{12}$C.$\frac{7+2\sqrt{10}}{12}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.函数f(x)=$\left\{\begin{array}{l}{-x-1,x<0}\\{2{x}^{2},x≥0}\end{array}\right.$ 的定义域是R.

查看答案和解析>>

同步练习册答案