精英家教网 > 高中数学 > 题目详情

已知数列{an},其中a1=1,an=3n-1•an-1(n≥2,n∈N),数列{bn}的前n项和数学公式其中n∈N*
(1)求数列{an}的通项公式;
(2)求数列{bn}的通项公式;
(3)求Tn=|b1|+|b2|+…+|bn|.

解:(1)因为an=3n-1•an-1(n≥2,n∈N),
所以log3an=log3an-1+(n-1),
an=3n-1•an-1(n≥2,n∈N),

(2)
分析:(1)通过对已知等式的两边取对手得到an=3n-1•an-1(n≥2,n∈N),通过累加求和的方法得到数列{an}的通项公式;
(2)将(1)中的结果代入并化简,利用通项与和的关系求出数列{bn}的通项公式;
(3)通过对n的讨论判断出bn的符号,然后将Tn=|b1|+|b2|+…+|bn|.的绝对值符号去掉,转化为数列{bn}的前n项和的问题,利用等比数列的前n项和公式求出值.
点评:求数列的前n项和,应该先求出数列的通项,根据通项的特点然后选择合适的求和方法进行计算.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

15、已知数列{an},其前n项和Sn=n2+n+1,则a8+a9+a10+a11+a12=
100

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an},其前n项和为Sn=
3
2
n2+
7
2
n? (n∈N*)

(Ⅰ)求a1,a2
(Ⅱ)求数列{an}的通项公式,并证明数列{an}是等差数列;
(Ⅲ)如果数列{bn}满足an=log2bn,请证明数列{bn}是等比数列,并求其前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

19、已知数列{an},其前n项和Sn满足Sn+1=2λSn+1(λ是大于0的常数),且a1=1,a3=4.
(1)求λ的值;
(2)求数列{an}的通项公式an
(3)设数列{nan}的前n项和为Tn,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an},其前n项和为Sn=
3
2
n2+
7
2
n (n∈N*)

(Ⅰ)求数列{an}的通项公式,并证明数列{an}是等差数列;
(Ⅱ)如果数列{bn}满足an=log2bn,请证明数列{bn}是等比数列,并求其前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an},其前n项和为Sn,点(n,Sn)在以F(0,
14
)为焦点,以坐标原点为顶点的抛物线上,数列{bn}满足bn=2 an
(1)求数列{an},{bn}的通项公式;
(2)设cn=an×bn,求数列{cn}的前n项和Tn

查看答案和解析>>

同步练习册答案