精英家教网 > 高中数学 > 题目详情

已知函数的图象如下,则它的解析式为

A.                           

B.      

C.

D.         

练习册系列答案
相关习题

科目:高中数学 来源:2010年江苏省镇江市高考数学一模试卷(解析版) 题型:解答题

已知函数的图象经过点(4,8).
(1)求该函数的解析式;
(2)数列{an}中,若a1=1,Sn为数列{an}的前n项和,且满足an=f(Sn)(n≥2),
证明数列成等差数列,并求数列{an}的通项公式;
(3)另有一新数列{bn},若将数列{bn}中的所有项按每一行比上一行多一项的规则排成如下数表:记表中的第一列数b1,b2,b4,b7,…,构成的数列即为数列{an},上表中,若从第三行起,每一行中的数按从左到右的顺序均构成等比数列,且公比为同一个正数.当时,求上表中第k(k≥3)行所有项的和.

查看答案和解析>>

科目:高中数学 来源:2010年江苏省镇江市高三第一次调研数学试卷(解析版) 题型:解答题

已知函数的图象经过点(4,8).
(1)求该函数的解析式;
(2)数列{an}中,若a1=1,Sn为数列{an}的前n项和,且满足an=f(Sn)(n≥2),
证明数列成等差数列,并求数列{an}的通项公式;
(3)另有一新数列{bn},若将数列{bn}中的所有项按每一行比上一行多一项的规则排成如下数表:记表中的第一列数b1,b2,b4,b7,…,构成的数列即为数列{an},上表中,若从第三行起,每一行中的数按从左到右的顺序均构成等比数列,且公比为同一个正数.当时,求上表中第k(k≥3)行所有项的和.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年山东省菏泽市高三5月高考冲刺题理科数学试卷(解析版) 题型:解答题

已知函数的图象过坐标原点O,且在点处的切线的斜率是.

(Ⅰ)求实数的值; 

(Ⅱ)求在区间上的最大值;

(Ⅲ)对任意给定的正实数,曲线上是否存在两点P、Q,使得是以O为直角顶点的直角三角形,且此三角形斜边中点在轴上?说明理由.

【解析】第一问当时,,则

依题意得:,即    解得

第二问当时,,令,结合导数和函数之间的关系得到单调性的判定,得到极值和最值

第三问假设曲线上存在两点P、Q满足题设要求,则点P、Q只能在轴两侧。

不妨设,则,显然

是以O为直角顶点的直角三角形,∴

    (*)若方程(*)有解,存在满足题设要求的两点P、Q;

若方程(*)无解,不存在满足题设要求的两点P、Q.

(Ⅰ)当时,,则

依题意得:,即    解得

(Ⅱ)由(Ⅰ)知,

①当时,,令

变化时,的变化情况如下表:

0

0

+

0

单调递减

极小值

单调递增

极大值

单调递减

。∴上的最大值为2.

②当时, .当时, ,最大值为0;

时, 上单调递增。∴最大值为

综上,当时,即时,在区间上的最大值为2;

时,即时,在区间上的最大值为

(Ⅲ)假设曲线上存在两点P、Q满足题设要求,则点P、Q只能在轴两侧。

不妨设,则,显然

是以O为直角顶点的直角三角形,∴

    (*)若方程(*)有解,存在满足题设要求的两点P、Q;

若方程(*)无解,不存在满足题设要求的两点P、Q.

,则代入(*)式得:

,而此方程无解,因此。此时

代入(*)式得:    即   (**)

 ,则

上单调递增,  ∵     ∴,∴的取值范围是

∴对于,方程(**)总有解,即方程(*)总有解。

因此,对任意给定的正实数,曲线上存在两点P、Q,使得是以O为直角顶点的直角三角形,且此三角形斜边中点在轴上

 

查看答案和解析>>

科目:高中数学 来源:2013届浙江东阳市高二下学期期中考试文科数学试卷(解析版) 题型:填空题

已知函数的图象如下所示:

给出下列四个命题:

(1)方程有且仅有6个根    (2)方程有且仅有3个根

(3)方程有且仅有5个根    (4)方程有且仅有4个根

其中正确命题是           

 

查看答案和解析>>

同步练习册答案