精英家教网 > 高中数学 > 题目详情
已知实系数方程x2+(a+1)x+a+b+1=0的两根分别为一个椭圆和一个双曲线的离心率,则
b
a
的取值范围是(  )
A、(-2,-1)
B、(-1,-
1
2
)
C、(-2,-
1
2
)
D、(-2,+∞)
分析:实系数方程x2+(a+1)x+a+b+1=0的两个根x1,x2分别作为椭圆和双曲线的离心率,根据判别式大于0,令a为横轴,b为纵轴,建立平面直角坐标系,作出这三个不等式所对应的平面区域S,设P(a,b)是平面区域S内的任意一点,A(-1,1),则可知
b
a
的几何意义是直线的斜率,进而可求得范围.
解答:解:f(x)=x2+(a+1)x+(a+b+1)
依题意f(x)=0的两个根x1,x2分别作为椭圆和双曲线的离心率
故 0<x1<1<x2
根据一元二次方程根的分布,可得关于实系数a,b的约束条件:
判别式=(a+1)2-4(a+b+1)=(a-1)2-4b-4>0
f(0)=a+b+1>0,f(1)=2a+b+3<0
令a为横轴,b为纵轴,建立平面直角坐标系,作出这三个不等式所对应的平面区域S,
设P(a,b)是平面区域S内的任意一点,A(-1,1),k=
b
a

则k的几何意义是直线PA的斜率.
作图,得-2<k<-
1
2

故选C
点评:本题主要考查了圆锥曲线的综合知识.涉及到了函数的根的分布,多项式恒等等知识.属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知实系数方程x2+ax+2b=0的一个根大于0且小于1,另一根大于1且小于2,则
b-2
a-1
的取值范围是(  )
A、(
1
4
,1)
B、(
1
2
,1)
C、(-
1
2
1
4
D、(0,
1
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实系数方程x2+ax+1=0的一个实根在区间(1,2)内,则a的取值范围为(  )
A、(-2,-1)
B、(-
5
2
,-2)
C、(1,2)
D、(2,
5
2
)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实系数方程x2+(m+1)x+m+n+1=0的两个实根分别为x1、x2,且0<x1<1,x2>1,则
n
m
的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实系数方程x2+(m+1)x+m+n+1=0的两个实数根分别是x1,x2,且0<x1<1,x2>1,则u=
m2+n2
mn
的取值范围是(  )

查看答案和解析>>

同步练习册答案