精英家教网 > 高中数学 > 题目详情
已知直线l经过点P(1,1),倾斜角α=
π6
,和圆x2+y2=4相交于A、B两点.
(1)选择恰当的参数,写出直线l的参数方程,并求线段AB的长;
(2)求点P到A,B两点的距离之积.
分析:(1)因为直线l经过P,所以根据P的坐标和已知的倾斜角写出直线的参数方程,求线段AB的长可用两种方法,方法一:利用垂径定理及勾股定理,由圆的半径r及圆心到直线的距离d,即可求出|AB|的长;方法二:把直线的参数方程代入圆的方程,化简后得到一个关于t的一元二次方程,利用韦达定理即可求出|AB|的长;
(2)由(1)中的方法二中的关于t的一元二次方程得到两个之积的值,求出绝对值即为点P到A、B两点的距离之积.
解答:解:(1)直线的参数方程为
x=1+tcos
π
6
y=1+tsin
π
6
,即
x=1+
3
2
t
y=1+
1
2
t

(法一)由圆的方程x2+y2=4得到圆心(0,0),半径r=2,直线的普通方程为:x-
3
y+
3
-1=0
所以圆(0,0)到直线的距离d=
|
3
-1|
2
,所以|AB|=2
r2-d2
=2
22-(
3
-1
2
)
2
=
12+2
3

(法二)把直线
x=1+
3
2
t
y=1+
1
2
t
代入x2+y2=4,
(1+
3
2
t)2+(1+
1
2
t)2=4,t2+(
3
+1)t-2=0

t1+t2=-(
3
+1)
t1t2=-2
,∴|AB|=|t1-t2|=
(t1+t2)2-4t1t2
=
12+2
3

(2)t1t2=-2,则点P到A,B两点的距离之积为|t1t2|=2.
点评:此题考查学生掌握并灵活运用直线与圆的参数方程,利用运用圆的垂径定理、勾股定理及韦达定理化简求值,是一道综合题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知直线l经过点P(3,0).
(1)若直线l平行于直线2x-y+1=0,求直线l的方程;
(2)若点O(0,0)和点M(6,6)到直线l的距离相等,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

选做题:坐标系与参数方程
已知直线l经过点P(2,3),倾斜角α=
π6

(Ⅰ)写出直线l的参数方程.
(Ⅱ)设l与圆x2+y2=4相交与两点A、B,求点P到A、B两点的距离之和.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线L经过点P(-4,-3),且被圆(x+1)2+(y+2)2=25截得的弦长为8,则直线L的方程是
x=-4和4x+3y+25=0
x=-4和4x+3y+25=0

查看答案和解析>>

科目:高中数学 来源: 题型:

A:如图所示,已知AB为⊙O的直径,AC为弦,OD∥BC,交AC于点D,BC=4cm,
(1)试判断OD与AC的关系;
(2)求OD的长;
(3)若2sinA-1=0,求⊙O的直径.
B:(选修4-4)已知直线l经过点P(1,1),倾斜角α=
4

(1)写出直线l的参数方程;
(2)设l与圆x2+y2=4相交于两点A、B,求点P到A、B两点的距离之积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(极坐标与参数方程)
已知直线l经过点P(2,1),倾斜角α=
π4

(Ⅰ)写出直线l的参数方程;
(Ⅱ)设直线l与圆O:ρ=2相交于两点A,B,求线段AB的长度.

查看答案和解析>>

同步练习册答案