精英家教网 > 高中数学 > 题目详情
如图在四棱锥P-ABCD中底面ABCD为直角梯形,∠BAD=90°,AD∥BC,BC=2AD;PA⊥底面ABCD,PA=AB=2,AD=,E为PC的中点,
(1)证明:PC⊥平面BDE;
(2)求二面角E-BD-C的大小。
解:(1)依题意可建立如图所示的空间直角坐标系A-xyz,
计算得


故PC⊥BE且PC⊥BD,
又BE、BD是平面BDE内两条相交直线,
∴PC⊥平面BDE; 
(2)由(1)知,平面BDE,
故平面BDE的法向量
而平面BDC的一个法向量
设二面角E-BD-C的平面角为θ,
依题意,得
而θ为锐角,故θ=
即二面角E-BD-C的大小为
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图在四棱锥P-ABCD中,底ABCD是矩形,PA⊥面ABCD,AP=AB=2,BC=2
2
,E、F、G分别为AD、PC、PD的中点.
(1)求证:FG∥面ABCD
(2)求面BEF与面BAP夹角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图在四棱锥P-ABCD中,PA⊥底面ABCD,∠DAB为直角,AB∥CD,AD=CD=2AB,E、F分别为PC、CD的中点;PA=kAB(k>0),且二面角E-BD-C的平面角大于30°,则k的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图在四棱锥P-ABCD中侧面PAD⊥底面ABCD,侧棱PA⊥PD,底面ABCD为直角梯形.其中BC∥AD,∠BAD=90°,AD=3BC,O是AD上一点
①若CD∥平面PBO 试指出O的位置并说明理由
②求证平面PAB⊥平面PCD
③若PD=BC=1,AB=2
2
,求P-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图在四棱锥P-ABCD中,侧棱PD⊥平面ABCD,M,N分别是AB,PC的中点,底面ABCD是菱形,
(1)求证:MN∥平面PAD;
(2)求证:平面PAC⊥平面PBD.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图在四棱锥P-ABCD中,底面ABCD是正方形,PA⊥底面ABCD,垂足为点A,PA=AB=1,点M,N分别是PD,PB的中点.
(I)求证:PB∥平面ACM;
(II)求证:MN⊥平面PAC;
(III)若
PF
=2
FC
,求平面FMN与平面ABCD所成二面角的余弦值.

查看答案和解析>>

同步练习册答案