精英家教网 > 高中数学 > 题目详情
4.已知函数f(x)=xlnx-ax,其中a为参数.
(1)求f(x)的极值;
(2)设g(x)=$\frac{x-1}{x{e}^{x}}$-lnx-$\frac{2}{x{e}^{2}}$,证明当x∈(0,+∞)时,g(x)<1恒成立.

分析 (1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数f(x)的极值即可;
(2)问题转化为xlnx+x-$\frac{x-1}{{e}^{x}}$>-$\frac{2}{{e}^{2}}$在(0,+∞)恒成立,令a=-1,则f(x)=xlnx+x,此时f(x)的最小值是-$\frac{1}{{e}^{2}}$,故问题转化为$\frac{x-1}{{e}^{x}}$<$\frac{1}{{e}^{2}}$在(0,+∞)恒成立,令h(x)=$\frac{x-1}{{e}^{x}}$,h′(x)=$\frac{2-x}{{e}^{x}}$,根据函数的单调性证明即可.

解答 解:(1)求导数可得f′(x)=lnx+1-a=0,则x=ea-1
函数在(0,ea-1)上f′(x)<0,在(ea-1,+∞)上f′(x)>0,
∴函数在x=ea-1时,取得极小值-ea-1
(2)当x∈(0,+∞)时,g(x)<1恒成立,
即$\frac{x-1}{x{e}^{x}}$-lnx-$\frac{2}{x{e}^{2}}$<1恒成立,
即xlnx+x-$\frac{x-1}{{e}^{x}}$>-$\frac{2}{{e}^{2}}$在(0,+∞)恒成立①,
由(1)令a=-1,则f(x)=xlnx+x,此时f(x)的最小值是-$\frac{1}{{e}^{2}}$,
故问题①转化为$\frac{x-1}{{e}^{x}}$<$\frac{1}{{e}^{2}}$在(0,+∞)恒成立,
令h(x)=$\frac{x-1}{{e}^{x}}$,h′(x)=$\frac{2-x}{{e}^{x}}$,
令h′(x)>0,解得:0<x<2,
令h′(x)<0,解得:x>2,
故h(x)在(0,2)递增,在(2,+∞)递减,
h(x)min=h(2)=$\frac{1}{{e}^{2}}$,
故xlnx+x-$\frac{x-1}{{e}^{x}}$>-$\frac{2}{{e}^{2}}$在(0,+∞)恒成立,
即x∈(0,+∞)时,g(x)<1恒成立.

点评 本题考查了函数的单调性、最值、极值问题,考查导数的应用以及转化思想,是一道综合题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.下列四个结论:
①函数$y={0.7^{\frac{1}{x}}}$的值域是(0,+∞);
②直线2x+ay-1=0与直线(a-1)x-ay-1=0平行,则a=-1;
③过点A(1,2)且在坐标轴上的截距相等的直线的方程为x+y=3;
④若圆柱的底面直径与高都等于球的直径,则圆柱的侧面积等于球的表面积.
其中正确的结论序号为④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数$f(x)=\left\{{\begin{array}{l}{x^2}\\{{2^x}}\end{array}}\right.\begin{array}{l}{\;}&{(0≤x<a)}\\{\;}&{(x>a)}\end{array}$,若存在实数b,使函数g(x)=f(x)-b有两个零点,则实数a的取值范围是(  )
A.(0,2)B.(2,+∞)C.(2,4)D.(4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在平面直角坐标系xOy中,圆O:x2+y2=r2(r>0)与圆M:(x-3)2+(y+4)2=4相交,则r的取值范围是3<r<7.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在平面直角坐标系xOy中,已知圆M的圆心在直线y=-2x上,且圆M与直线x+y-1=0相切于点P(2,-1).
(1)求圆M的方程;
(2)过坐标原点O的直线l被圆M截得的弦长为$\sqrt{6}$,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.宏利重工有限公司从2012年起,若不改善生产环境,按现状生产,每月收入为70万元,同时将受到环保部门的处罚,第一个月罚3万元,以后每月递增2万元的处罚.如果从2012年一月起投资400万元增加回收净化设备以改善生产环境(改造设备时间不计).按测算,新设备投产后的月收入与时间的关系如图所示.
(1)设f(n)表示投资改造后的前n个月的总收入,请写出f(n)的函数关系式;
(2)试问:经过多少个月,投资开始见效,也就是说,投资改造后的月累计纯收入多于不改造时的月累计纯收入?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=lnx-ax(a∈R)
(Ⅰ)求f(x)的单调区间;
(Ⅱ)g(x)=f(x)-lnx+2ex,当g(x)在[$\frac{1}{2}$,2]上存在零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知点P(1,-2),Q(-1,-1),O(0,0),点M(x,y)在不等式组$\left\{\begin{array}{l}{x+2y-1≥0}\\{2x+y-5≤0}\\{y≤x+2}\end{array}\right.$所表示的平面区域内,则|$\overrightarrow{OP}$+$\overrightarrow{OQ}$+$\overrightarrow{OM}$|的取值范围是(  )
A.[$\frac{\sqrt{2}}{2}$,5]B.[$\frac{1}{2}$,5]C.[$\frac{\sqrt{2}}{2}$,$\sqrt{5}$]D.[$\frac{1}{2}$,25]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若将函数y=sin2x的图象向右平移$\frac{π}{3}$个单位长度,则平移后图象的函数解析式为yy=sin(2x-$\frac{2π}{3}$).

查看答案和解析>>

同步练习册答案