已知定义在R上的单调函数y=f(x),当x<0时,f(x)>1;且对任意的实数x,y∈R,有f(x+y)=f(x)·f(y).
(Ⅰ)求f(0),并写出适合条件的函数f(x)的一个解析式;
(Ⅱ)按(Ⅰ)所写的f(x)的解析式,若数列{an}满足a1=f(0),且f(an+1)=,(n∈N*);
(1)求数列{an}的通项公式;
(2)令,设数列{bn}的前n项和为Sn,若对任意n∈N*,不等式Sn>c-bn恒成立,求实数c的取值范围.
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
1 |
f(n) |
1 |
2n |
4 |
35 |
1 |
2 |
1 |
2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
1 |
f(-2-an) |
1 |
2 |
1 |
a1a2 |
1 |
a2a3 |
1 |
anan+1 |
4 |
3 |
1 |
an+1 |
1 |
an+2 |
1 |
a2n |
12 |
35 |
查看答案和解析>>
科目:高中数学 来源: 题型:
1 |
f(n) |
1 |
2n |
4 |
3 |
4 |
35 |
1 |
2 |
1 |
2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
1 |
f(n) |
1 |
2n |
4 |
3 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com