精英家教网 > 高中数学 > 题目详情
若方程的两实根均在区间(,1)内,求的取值范围            

试题分析:因为方程的有两个根,则满足判别式大于等于零,得到,f(x)= ,则f(1)=2,f(-1)=-2k>0, ,解得实数k的范围是。故答案为
点评:解决该试题的关键是理解二次方程中根的分布 的运用,结合图像来得到端点值的函数值的符号,以及判别式和对称轴结合得到结论。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分10分)已知函数处取得极值2。
(Ⅰ)求函数的解析式;
(Ⅱ)当m满足什么条件时,在区间为增函数;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题12分)某公司生产一种产品每年需投入固定成本为0.5万元,此外每生产100件这种产品还需要增加投入0.25万元.经预测知,当售出这种产品百件时,若,则销售所得的收入为万元:若,则销售收入为万元.
(1)若该公司的这种产品的年产量为百件,请把该公司生产并销售这种产品所得的年利润表示为当年生产量的函数;
(2)当年产量为多少时,当年公司所获利润最大?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
已知二次函数满足以下两个条件:
①不等式的解集是(-2,0)  ②函数上的最小值是3 
(Ⅰ)求的解析式;
 (Ⅱ)若点在函数的图象上,且
(ⅰ)求证:数列为等比数列
(ⅱ)令,是否存在正实数,使不等式对于一切的恒成立?若存在,指出的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分16分)设.
(1)若恒成立,求实数的取值范围;
(2)若时,恒成立,求实数的取值范围;
(3)当时,解不等式.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知f(x)=ax2+bx+c的图象过原点(-1,0),是否存在常数a、b、c,使不等式x≤f(x) ≤对一切实数x均成立?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)已知函数y=的定义域为R,解关于x的不等式

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知P={0,1},Q={-1,0,1},f是从P到Q的映射,则满足f(0)>f(1)的映射有(   )个
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分10分)宁波市的一家报刊点,从报社买进《宁波日报》的价格是每份0.20元,卖出的价格是每份0.3元,卖不掉的报纸可以以每份0.05元的价格退回报社。在一个月(30天计)里,有20天可以卖出400份,其余10天每天只能卖出250份,但是每天从报社买进的份数必须相同,这个摊主每天从报社买进多少份,才能使得每月所获利润最大?并计算他一个月最多可以赚多少元?

查看答案和解析>>

同步练习册答案