精英家教网 > 高中数学 > 题目详情
11.函数f(x)=2sin(ωx+φ)$(ω>0,-\frac{π}{2}<φ<\frac{π}{2})$的部分图象如图所示,则f(x)的单调增区间是[kπ-$\frac{π}{12}$,$\frac{5π}{12}+kπ$].

分析 根据图象的两个点A、B的横坐标,得到四分之三个周期的值,得到周期的值,做出ω的值,把图象所过的一个点的坐标代入方程做出初相,写出解析式,利用正弦函数的图象和性质即可求得f(x)的单调增区间.

解答 解:由图象可以看出正弦函数的四分之三个周期是$\frac{5π}{12}-(-\frac{π}{3})=\frac{3π}{4}$,
∴T=$\frac{2π}{ω}$=π
∴ω=2,
又由函数f(x)的图象经过($\frac{5π}{12}$,2)
∴2=2sin(2×$\frac{5π}{12}$+φ)
∴$\frac{5π}{6}$+φ=2kπ+$\frac{π}{2}$,(k∈Z),
即φ=2kπ-$\frac{π}{3}$,
又由-$\frac{π}{2}$<φ<$\frac{π}{2}$,则φ=-$\frac{π}{3}$,
∴f(x)=2sin(2x-$\frac{π}{3}$),
∴由2kπ-$\frac{π}{2}$≤2x-$\frac{π}{3}$≤2kπ+$\frac{π}{2}$,k∈Z可解得f(x)的单调增区间是:[kπ-$\frac{π}{12}$,$\frac{5π}{12}+kπ$].
故答案为:[kπ-$\frac{π}{12}$,$\frac{5π}{12}+kπ$].

点评 本题主要考查了由部分图象确定函数的解析式,正弦函数的图象和性质,本题解题的关键是确定初相的值,这里利用代入点的坐标求出初相,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.设集合A={x||x-1|<2},B={y|y=2x,x∈[0,2]},则A∩B=(  )
A.[0,2]B.(0,3)C.[0,3)D.(1,4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.点P在圆(x-3)2+(y-4)2=1上运动,两定点A、B的坐标分别为(-6,0)、(6,0).
(1)求$\overrightarrow{OP}$$•\overrightarrow{AP}$的取值范围;
(2)求|PA|2+|PB|2的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.以下五个写法中:①{0}∈{0,1,2};②∅⊆{1,2};③{0,1,2}={2,0,1};④0∈∅;⑤A∩∅=A,正确的个数有2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数$f(x)=1+\frac{a}{{{2^x}+1}}({a∈R})$.
(1)当a=-2时,求f(x)的反函数;
(2)当a≥9时,证明函数g(x)=f(x)+2x在[0,1]上是减函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知数列{an}为等差数列,a1=2,其前n和为Sn,数列{bn}为等比数列,且${a_1}{b_1}+{a_2}{b_2}+{a_3}{b_3}+…+{a_n}{b_n}=(n-1)•{2^{n+2}}+4$对任意的n∈N*恒成立.
(1)求数列{an}、{bn}的通项公式;
(2)是否存在p,q∈N*,使得$2{({a_p})^5}-{b_q}=2016$成立,若存在,求出所有满足条件的p,q;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数y=$(\frac{1}{2})^{{x}^{2}-1}$的单调递增区间为(  )
A.(-∞,0]B.[0,+∞)C.(-1,+∞)D.(-∞,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若函数f(x)的定义域为D内的某个区间I上是增函数,且F(x)=$\frac{f(x)}{x}$在I上也是增函数,则称y=f(x)是I上的“完美函数”,已知g(x)=ex+x-lnx+1,若函数g(x)是区间[$\frac{m}{2}$,+∞)上的“完美函数”,则正整数m的最小值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数y=xsinx+cosx的图象关于(  )
A.x轴对称B.y轴对称C.原点对称D.以上都不正确

查看答案和解析>>

同步练习册答案