精英家教网 > 高中数学 > 题目详情
一个动圆与直线x=5相切,且与圆x2+y2+2x-15=0外切,求动圆圆心的轨迹方程.
考点:轨迹方程
专题:直线与圆
分析:把圆的一般式方程化为标准式,求出圆的圆心坐标和半径,设出动圆圆心坐标,利用已知列等式,整理后得答案.
解答: 解:由x2+y2+2x-15=0,得(x+1)2+y2=16.
∴定圆圆心为(-1,0),半径等于4.
可设动圆圆心M(x,y),则其半径为|x-5|.
由题设可得:(x+1)2+y2=(4+|x-5|)2
整理得:y2=-20(x-4),(x<5).
∴动圆圆心的轨迹方程为y2=-20(x-4),(x<5).
点评:本题考查了轨迹方程的求法,关键是由题意列出正确的等式,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出下列四个向量:
①命题“?x∈R,x2+1>3x”的否定是“?x∈R,x2+1≤3x”;
②“m=-2”是“直线(m+2)x+my+1=0与直线(m-2)x+(m+2)y-3=0相互垂直”的必要不充分条件;
③设圆x2+y2+Dx+Ey+F=0(D2+E2-4F>0)与坐标轴有4个交点,分别为A(x1,0),B(x2,0),C(0,y1),D(0,y2),则x1x2-y1y2=0;
④对?x∈R+,不等式x≥a
x
-1恒成立,则a≤2
其中所有真命题的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aln(x+1)+
1
x+1
+3x-1.
(1)当a=1时,求f(x)的单调区间;
(2)若x≥0时,f(x)≥0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知方程x5+x+1=0和x+
5x
+1=0的实根分别为α和β,则α+β=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
a
x
+lnx-1.
(1)若a>0,求f(x)在(0,e]上的最小值;
(2)若a=2e,求证:对x∈(0,e]都有
2e
x
+lnx≥3.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的定义域为R,且满足f(-x)=
1
f(x)
>0,g(x)=f(x)+c(c为常数)在区间[a,b]上是减函数.判断g(x)在[-b,-a]上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
2
sin2x-
3
2
cos2x,x∈[
π
2
,π],求f(x)的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=1+log2x与g(x)=2-x+1在同一直角坐标系下的图象大致是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

已知,若0≤θ≤2π,则使tanθ≤1成立的角θ的取值范围是
 

查看答案和解析>>

同步练习册答案