精英家教网 > 高中数学 > 题目详情
如图所示,平面α∥平面β,点A∈α,C∈α,点B∈β,D∈β,点E,F分别在线段AB,CD上,AB,CD所在直线异面,且AE:EB=CF:FD
(Ⅰ)求证:EF∥β;    
(Ⅱ)若E,F分别是AB,CD的中点,AC=4,BD=6,且AC,BD所成的角为60°,求EF的长.
分析:(Ⅰ)直接连接AD,作EG∥BD交AD于点G,连接FG;结合AE:EB=CF:FD可得EG∥β,FG∥α;进而得到平面EFG∥β即可证得结论;
(Ⅱ)结合第一问中的结论和AC,BD所成的角为60°可以得到EG=
1
2
BD=3,FG=
1
2
AC=2以及∠EGF=120°或60°;最后利用余弦定理即可求出结论.
解答:(Ⅰ)证明:连接AD,作EG∥BD交AD于点G,连接FG,
因为AE:EB=CF:FD
∴EG∥BD,FG∥AC,
则EG∥β,FG∥α,
∵α∥β
∴FG∥β;
又因为;EG∩FG=G.
∴平面EFG∥β
而EF?平面EFG;
∴EF∥β
(Ⅱ)解:∵EG∥BD,FG∥AC且E,F分别是AB,CD的中点,AC=4,BD=6;
∴EG=
1
2
BD=3,FG=
1
2
AC=2
∵AC,BD所成的角为60°,
∴∠EGF=120°或60°
∴EF=
EG 2+FG 2-2EG•FGcos∠EGF
=
22+32-2×2×3cos∠120°
=
19

或EF=
22+32-2×2×3×cos∠60°
=
7

EF=
19
7
点评:本题主要考查空间中线段距离的计算以及线面平行的判定.在求线段长度问题是,一般是放在三角形中,借助于正弦定理或余弦定理求解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,已知三棱锥A-BCD的底面是等边三角形,三条侧棱长都等于1,且∠BAC=30°,M,N分别在棱AC和AD上.
(1)将侧面沿AB展开在同一个平面上,如图②所示,求证:∠BAB′=90°.
(2)求BM+MN+NB的最小值.
(3)当BM+MN+NB取得最小值时,证明:CD∥平面BMN

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,一隧道内设双行线公路,其截面由长方形的三条边和抛物线的一段构成,为保证安全,要求行驶车辆顶部(设为平顶)与隧道顶部在竖直方向上高度之差至少要有0.5米.
(1)以抛物线的顶点为原点O,其对称轴所在的直线为y轴,建立平面直角坐标系(如图),求该抛物线的方程;
(2)若行车道总宽度AB为7米,请计算通过隧道的车辆限制高度为多少米?(精确到0.1m)

查看答案和解析>>

科目:高中数学 来源: 题型:

为了测试某种金属的热膨胀性能,将这种金属的一根细棒加热,从100℃开始第一次量细棒的长度,以后每升高40℃量一次,把依次量得的数据所成的数列{ln}用图象表示如图所示.若该金属在20℃~500℃之间,热膨胀性能与温度成一次函数关系,试根据图象回答下列问题:
(Ⅰ)第3次量得金属棒的长度是多少米?此时金属棒的温度是多少?
(Ⅱ)求通项公式ln
(Ⅲ)求金属棒的长度ln(单位:m)关于温度t(单位:℃)的函数关系式;
(Ⅳ)在30℃的条件下,如果把两块这种矩形金属板平铺在一个平面上,这个平面的最高温度可达到500℃,问铺设时两块金属板之间至少要留出多宽的空隙?

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•自贡三模)如图所示,己知三棱柱ABC-A1B1C1的侧棱与底面垂直,AA1=AB=AC=1,AB⊥AC,M,N分别是CC1,BC的中点,P点在A1B1上,且满足
A1P
A1B1
(λ∈R).
(I)证明:PN⊥AM;
(II)当λ取何值时,直线PN与平面ABC所成的角θ最大?并求出该最大角的正切值;
(III)在(II)条件下求P到平而AMN的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网轮滑是穿着带滚轮的特制鞋在坚硬的场地上滑行的运动.如图,助跑道ABC是一段抛物线,某轮滑运动员通过助跑道获取速度后飞离跑道然后落到离地面高为1米的平台上E处,飞行的轨迹是一段抛物线CDE(抛物线CDE与抛物线ABC在同一平面内),D为这段抛物线的最高点.现在运动员的滑行轨迹所在平面上建立如图所示的直角坐标系,x轴在地面上,助跑道一端点A(0,4),另一端点C(3,1),点B(2,0),单位:米.
(Ⅰ)求助跑道所在的抛物线方程;
(Ⅱ)若助跑道所在抛物线与飞行轨迹所在抛物线在点C处有相同的切线,为使运动员安全和空中姿态优美,要求运动员的飞行距离在4米到6米之间(包括4米和6米),试求运动员飞行过程中距离平台最大高度的取值范围?
(注:飞行距离指点C与点E的水平距离,即这两点横坐标差的绝对值.)

查看答案和解析>>

同步练习册答案