精英家教网 > 高中数学 > 题目详情

如图,在三棱锥中,

(Ⅰ)求证

(Ⅱ)求二面角的大小;

(Ⅲ)求点到平面的距离.

(Ⅰ)略,(Ⅱ),(Ⅲ)


解析:

解法一

(Ⅰ)取中点,连结

平面

平面

(Ⅱ)

,即,且

平面

中点.连结

在平面内的射影,

是二面角的平面角.

中,

二面角的大小为

(Ⅲ)由(Ⅰ)知平面

平面平面

,垂足为

平面平面

平面

的长即为点到平面的距离.

由(Ⅰ)知,又,且

平面

平面

中,

到平面的距离为

解法二

(Ⅰ)

平面

平面

(Ⅱ)如图,以为原点建立空间直角坐标系

中点,连结

是二面角的平面角.

二面角的大小为

(Ⅲ)

在平面内的射影为正的中心,且的长为点到平面的距离.

如(Ⅱ)建立空间直角坐标系

的坐标为

到平面的距离为

练习册系列答案
相关习题

科目:高中数学 来源:2013届广西玉林市高二下学期三月月考文科数学试卷(解析版) 题型:解答题

如图,在三棱锥中,侧面与侧面均为等边三角形,中点.

 (Ⅰ)证明:平面

(Ⅱ)求二面角的余弦值.    (本题12分)

 

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年浙江省台州市高三上学期期末理科数学试卷 题型:解答题

如图,在三棱锥中, 两两垂直且相等,过的中点作平面,且分别交,交的延长线于

(Ⅰ)求证:平面

(Ⅱ)若,求二面角的余弦值.

 

 

 

查看答案和解析>>

科目:高中数学 来源:2011---2012学年四川省高二10月考数学试卷 题型:解答题

如图:在三棱锥中,已知点分别为棱的中点.

(Ⅰ)求证:∥平面

(Ⅱ)若,求证:平面⊥平面.

 

 

 

查看答案和解析>>

科目:高中数学 来源:黑龙江省2013届高一下学期期末考试数学(理) 题型:解答题

如图,在三棱锥中,中点。(1)求证:平面

(2)在线段上是否存在一点,使二面角的平面角的余弦值为?若存在,确定点位置;若不存在,说明理由。

 

查看答案和解析>>

同步练习册答案