精英家教网 > 高中数学 > 题目详情
2.自原点O向直线l作垂线,垂足为A(-1,2),则直线l的方程为x-2y+5=0.

分析 由斜率公式和垂直关系可得直线的斜率,可得点斜式方程,化为一般式即可.

解答 解:由题意可kOA=$\frac{2-0}{-1-0}$=-2,
由垂直关系可得l的斜率k′=$\frac{1}{2}$,
∴直线l的方程为:y-2=$\frac{1}{2}$(x+1),
化为一般式可得:x-2y+5=0
故答案为:x-2y+5=0.

点评 本题考查直线的一般式方程和垂直关系,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.设集合A={x|2(log${\;}_{\frac{1}{2}}$x)2-7log2x+3≤0},若当x∈A时,函数f(x)=log2$\frac{x}{{2}^{a}}$•log2$\frac{x}{4}$的最大值为2,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.函数f(x)=$\sqrt{1-\frac{1}{x}}$的定义域为(-∞,0)∪[1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.△ABC中,角A、B、C所对的边分别为a,b,c,则$\overrightarrow{AC}$•$\overrightarrow{CB}$<0是直线ax+by+c=0与圆x2+y2=1相交的(  )条件.
A.充要B.充分不必要
C.必要不充分D.既不充分也不必要

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.数列求极限:$\underset{lim}{n→∞}$n2($\frac{k}{n}$-$\frac{1}{n+1}$-$\frac{1}{n+2}$-$\frac{1}{n+3}$-…-$\frac{1}{n+k}$)=$\frac{k(k+1)}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知全集U={1,2,a2-2a+3},A=(1,a),∁UA={3},则实数a等于(  )
A.0或2B.0C.1或2D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知集合A={x|x<a},B={x|x<-1,或x>0},若A∩(∁RB)=∅,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知复数z的实部为整数,且2z•$\overline{z}$-z=$\frac{10}{3+i}$
(1)求复数z;
(2)若复数u满足|u+2|=|z|,求|u|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知$\frac{1-cos2α}{sinαcosα}$=1,tan(β-α)=-$\frac{1}{3}$,则tan(β-2α)=(  )
A.-1B.1C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

同步练习册答案