精英家教网 > 高中数学 > 题目详情
已知m∈R,
a
=(-1,x2+m)
b
=(m+1,
1
x
)
c
=(-m,
x
x+m
)

(Ⅰ)当m=-1时,求使不等式|
a
c
|<1
成立的x的取值范围;
(Ⅱ)求使不等式
a
b
>0
成立的x的取值范围.
(Ⅰ)当m=-1时,
a
=(-1,x2-1)
c
=(1,
x
x-1
)
.
a
c
=-1+
x(x2-1)
x-1
=x2+x-1.
|
a
c
|=|x2+x-1|<1

x2+x-1>-1
x2+x-1<1.
解得-2<x<-1或0<x<1.
∴当m=-1时,使不等式|
a
c
|<1
成立的x的取值范围是{x|-2<x<-1或0<x<1}.
(Ⅱ)∵
a
b
=-(m+1)+
x2+m
x
=
x2-(m+1)x+m
x
=
(x-1)(x-m)
x
>0

c
=(-m,
x
x+m
)
,所以x≠-m
∴当m<0时,x∈(m,0)∪(1,+∞);
当m=0时,x∈(1,+∞);
当0<m<1时,x∈(0,m)∪(1,+∞);
当m=1时,x∈(0,1)∪(1,+∞);
当m>1时,x∈(0,1)∪(m,+∞).
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知m∈R,
a
=(-1,x2+m)
b
=(m+1,
1
x
)
c
=(-m,
x
x+m
)

(Ⅰ)当m=-1时,求使不等式|
a
c
|<1
成立的x的取值范围;
(Ⅱ)求使不等式
a
b
>0
成立的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知m∈R,a>b>1,f(x)=
mxx-1
,试比较f(a)与f(b)的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知m∈R,A={x|x2-2x-3≤0,x∈R},B={x|-2+m≤x≤2+m,x∈R}.
(1)若A∩B=[0,3],求m的值;
(2)若A⊆?RB,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知m∈R,a>b>1,f(x)=,试比较f(a)与f(b)的大小.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年安徽省阜阳三中高一(上)第二次调研数学试卷(解析版) 题型:解答题

已知m∈R,A={x|x2-2x-3≤0,x∈R},B={x|-2+m≤x≤2+m,x∈R}.
(1)若A∩B=[0,3],求m的值;
(2)若A⊆∁RB,求m的取值范围.

查看答案和解析>>

同步练习册答案